Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 166-177.DOI: 10.13745/j.esf.sf.2024.11.25
Previous Articles Next Articles
SHEN Pengfei1,2(), HOU Jiaxin2, LÜ Tao3, BI Haoyuan2, HE Juan1,4, LI Xiaosen1,4, LI Gang1,4,*(
)
Received:
2023-08-15
Revised:
2024-12-15
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
SHEN Pengfei, HOU Jiaxin, LÜ Tao, BI Haoyuan, HE Juan, LI Xiaosen, LI Gang. Study on the influence of reservoir permeability evolution around production wells on production capacity of natural gas hydrate[J]. Earth Science Frontiers, 2025, 32(2): 166-177.
参数 | 数值 |
---|---|
左右井间距 | 45.0 m |
埋深 | 235.3 m |
初始压力pB | 4.19 MPa |
温度TB | 277.84 K |
开采井初始压力pW0 | 3.91 MPa |
孔隙度、初始饱和度 | Φ=0.3、SH=0.40、SA=0.60 |
气体组分 | 100% CH4 |
地温梯度 | 0.013 K/m |
本征渗透率(kx=ky=kz) | 1×10-15 m2 (1 mD) |
开采井渗透率 | 5×10-9 m2 (5 000 D) |
湿热导率、干热导率 | 3.1、1.0 W/(m·K-1) |
复合导热模型[ | kΘC=kΘRD+(SA0.5+SH0.5) (kΘRW-kΘRD)+ϕSIkΘI |
毛细压力模型[ | Pcap=-P01[(S*)-1/λ-1)] S*=(SA-SirA)/(SmxA-SirA) |
相对渗透率模型[ | krA=( SA*)n krG=(SG*)nG SA*=(SA-SirA)/(1-SirA) SG*=(SG-SirG)/(1-SirG) |
(SirA & SirG) | 0.30、0.05 |
(λ) | 0.45 |
(P01) | 105 Pa |
n和nG[ | 3.572 |
Table 1 Physical parameters of DK-2 in the permafrost region of Qilian Mountain
参数 | 数值 |
---|---|
左右井间距 | 45.0 m |
埋深 | 235.3 m |
初始压力pB | 4.19 MPa |
温度TB | 277.84 K |
开采井初始压力pW0 | 3.91 MPa |
孔隙度、初始饱和度 | Φ=0.3、SH=0.40、SA=0.60 |
气体组分 | 100% CH4 |
地温梯度 | 0.013 K/m |
本征渗透率(kx=ky=kz) | 1×10-15 m2 (1 mD) |
开采井渗透率 | 5×10-9 m2 (5 000 D) |
湿热导率、干热导率 | 3.1、1.0 W/(m·K-1) |
复合导热模型[ | kΘC=kΘRD+(SA0.5+SH0.5) (kΘRW-kΘRD)+ϕSIkΘI |
毛细压力模型[ | Pcap=-P01[(S*)-1/λ-1)] S*=(SA-SirA)/(SmxA-SirA) |
相对渗透率模型[ | krA=( SA*)n krG=(SG*)nG SA*=(SA-SirA)/(1-SirA) SG*=(SG-SirG)/(1-SirG) |
(SirA & SirG) | 0.30、0.05 |
(λ) | 0.45 |
(P01) | 105 Pa |
n和nG[ | 3.572 |
[1] | CHIBURA P E, ZHANG W, LUO A, et al. A review on gas hydrate production feasibility for permafrost and marine hydrates[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 104441. |
[2] | WANG X, SUN Y, Li B, et al. Reservoir stimulation of marine natural gas hydrate-a review[J]. Energy, 2022, 126120. |
[3] | Li G, MORIDIS G J, ZHANG K N, et al. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea[J]. Journal of Petroleum Science and Engineering, 2011, 77: 49-68. |
[4] | WEI W N, Li B, Gan Q, Li Y L. Research progress of natural gas hydrate exploitation with CO2 replacement: a review[J]. Fuel, 2022, 312: 122873. |
[5] | FARHADIAN A, SHADLOO A, ZHAO X, et al. Challenges and advantages of using environmentally friendly kinetic gas hydrate inhibitors for flow assurance application: a comprehensive review[J]. Fuel, 2023, 336: 127055. |
[6] | Li G, Li X S, Li B, et al. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator[J]. Energy, 2013, 64: 298-306. |
[7] | HUANG M, WU L, NING F, et al. Research progress in natural gas hydrate reservoir stimulation[J]. Natural Gas Industry B, 2023, 10(2): 114-129. |
[8] | KOJI Y, BOSWELL R, TIMOTHY S C, et al. Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing[J]. Energy Fuels, 2022, 36(10): 5047-5062. |
[9] | 祝有海, 张永勤, 文怀军, 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11): 1762-1771. |
[10] | LU Z Q, SULTAN N, JIN C S, et al. Modeling on gas hydrate formation conditions in the Qinghai-Tibet plateau permafrost[J]. Chinese Journal of Geophysics, 2009, 52(1): 157-168. |
[11] | ZHU Y H, ZHANG Y Q, WEN H J, et al. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China[J]. Acta Geologica Sinica, 2010, 84(1): 1-10. |
[12] | 王平康, 祝有海, 卢振权, 等. 青海祁连山冻土区天然气水合物研究进展综述[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 76-95. |
[13] | 卢振权, 祝有海, 张永勤, 等. 青海祁连山冻土区天然气水合物资源量的估算方法: 以钻探区为例[J]. 地质通报, 2010, 29(9): 1310-1318. |
[14] | 祝有海, 张永勤, 方慧, 等. 中国陆域天然气水合物调查研究主要进展[J]. 中国地质调查, 2020, 7(4): 1-9. |
[15] | 祝有海, 卢振权, 谢锡林. 青藏高原天然气水合物潜在分布区预测[J]. 地质通报, 2011, 30(12): 1918-1926. |
[16] | LI B, CHEN L L, WAN Q C, et al. Experimental study of frozen gas hydrate decomposition towards gas recovery from permafrost hydrate deposits below freezing point[J]. Fuel, 2020, 280. |
[17] | DONG H M, SUN J M, CUI L K, et al. Characteristics of the pore structure of natural gas hydrate reservoir in the Qilian Mountain permafrost, Northwest China[J]. Journal of Applied Geophysics, 2019, 164: 153-159. |
[18] | LI Q C, ZHAO D F, YIN J K, et al. Sediment instability caused by gas production from hydrate-bearing sediment in Northern South China Sea by horizontal wellbore: evolution and mechanism[J]. Natural Resources Research, 2023, 32: 1595-1620. |
[19] | 聂帅帅. 海洋非成岩天然气水合物藏水力成缝机理与多层压裂合采行为研究[D]. 长春: 吉林大学, 2023. |
[20] | 惠程玉, 张逸群, 张潘潘. 基于径向井压裂复合降压法的天然气水合物开采产能数值模拟[J]. 天然气工业, 2022, 42(12): 152-164. |
[21] | 钟秀平. 神狐水合物藏裂缝起裂-扩展行为与裂缝形态对增产潜力的影响[D]. 长春: 吉林大学, 2022. |
[22] | 于笑. 海域水合物藏产能评价及增产措施研究[D]. 青岛: 中国石油大学(华东), 2020. |
[23] | 冯永昌, 陈林, 岡島淳之介, 等. 天然气水合物藏裂缝注热的数值模拟研究[J]. 工程热物理学报, 2021, 42(3): 663-667. |
[24] | 姚远欣, 李栋梁, 梁德青. 天然气水合物储层水力压裂研究进展[J]. 新能源进展, 2020, 8(4): 282-290. |
[25] | SHEN P F, LI G, LI X S, et al. Application of fracturing technology to increase gas production in low-permeability hydrate reservoir: a numerical study[J]. Chinese Journal of Chemical Engineering, 2021, 34: 267-277. |
[26] | CHEN C, YANG L, JIA R, et al. Simulation study on the effect of fracturing technology on the production efficiency of natural gas hydrate[J]. Energies, 2017, 10(8): 1241-57. |
[27] | MORIDIS G, KOWALSKY M, PRUESS K. TOUGH+HYDRATE v1.1 user’s manual: a code for the simulation of system behavior in hydrate-bearing geologic media[M]. Berkeley: Lawrence Berkeley National laboratory, 2009. |
[28] | VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898. |
[29] | SUN Y, LI B, GUO W, et al. Comparative analysis of the production trial and numerical simulations of gas production from multilayer hydrate deposits in the Qilian Mountain permafrost[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 456-466. |
[30] | Li B, Li X S, Li G, et al. Evaluation of gas production from Qilian Mountain permafrost hydrate deposits in two-spot horizontal well system[J]. Cold Regions Science and Technology, 2015, 109: 87-98. |
[1] | KUANG Zenggui, REN Jinfeng, DENG Wei, LAI Hongfei, XIE Yingfeng. Drilling discoveries and accumulation characteristics of gas hydrate in the Northern Slope of South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 1-19. |
[2] | YANG Jinxiu, WANG Chen, XING Lanchang, WEI Wei, ZHANG Wei, HAN Weifeng, ZHAO Li, LIU Kunyi. Fluid migration and seabed methane seepage associated with marine gas hydrate systems [J]. Earth Science Frontiers, 2025, 32(2): 113-125. |
[3] | JI Mengfei, WANG Jiliang, WANG Weiwei, ZHANG Jiecheng, LIU Xueqin, WU Shiguo. Geophysical characterization of gas hydrate reservoir in fine-grained sediment in Shenhu area [J]. Earth Science Frontiers, 2025, 32(2): 126-139. |
[4] | LIANG Chen, JIANG Tao, KUANG Zenggui, HU Yipan, YANG Chengzhi, REN Jinfeng, LAI Hongfei. Sedimentary time and genesis mechanism of natural gas hydrate reservoirs in the Qiongdongnan Basin [J]. Earth Science Frontiers, 2025, 32(2): 140-152. |
[5] | GUAN Wen, YANG Hailin, LU Hailong. Research on factors affecting the phase equilibrium of natural gas hydrates in porous media [J]. Earth Science Frontiers, 2025, 32(2): 153-165. |
[6] | YU Lu, LI Xian, CUI Guodong, XING Donghui, LU Hongfeng, WANG Yejia. The impact of threshold pressure gradient on the production dynamics of gas hydrate reservoirs in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 178-194. |
[7] | WANG Xiujuan, HAN Lei, LIU Junzhou, JIN Jiapeng, KUANG Zenggui, ZHOU Jilin. Geophysical characteristics and identification of the coexistence of gas hydrate and free gas [J]. Earth Science Frontiers, 2025, 32(2): 20-35. |
[8] | WU Nengyou, LI Yanlong, JIANG Yujing, SUN Jinsheng, XIE Wenwei, HU Gaowei, WANG Ren, YU Yanjiang, WANG Jintang, CHEN Qiang, SHEN Kaixiang, SUN Zhiwen, CHEN Mingtao. Proposal, subject connotation and prospect of marine natural gas hydrate engineering geology [J]. Earth Science Frontiers, 2025, 32(2): 216-229. |
[9] | LAI Hongfei, KUANG Zenggui, FANG Yunxin, XU Chenlu, REN Jinfeng, LIANG Jinqiang, LU Jing’an. Origin and genetic mechanism of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 36-60. |
[10] | JIN Jiapeng, WANG Xiujuan, DENG Wei, LI Qingping, LI Lixia, YU Han, ZHOU Jilin, WU Nengyou. Accumulation characteristics and occurrence differences of multitype gas hydrates in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 61-76. |
[11] | CHEN Yuhe, REN Jinfeng, LI Tingwei, XU Mengjie, WANG Xiaoxue, LIAO Yuantao. Developmental characteristics and evolution of seepage gas hydrate accumulation system in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 77-93. |
[12] | SONG Dekun, LIU Lele, WANG Dong. Experimental study on the sensitivity of hydraulic permeability of fine-grained sediments sampled from a gas hydrate distribution area in the northern South China Sea [J]. Earth Science Frontiers, 2024, 31(6): 405-414. |
[13] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[14] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[15] | HU Guonong, HAO Shiyan, FAN Pingtian, LI Yu, GAO Qinghua. Redevelopment potential of NNW oil field, Ordos Basin—an analysis [J]. Earth Science Frontiers, 2023, 30(1): 106-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||