Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 178-194.DOI: 10.13745/j.esf.sf.2024.00.00
Previous Articles Next Articles
YU Lu1(), LI Xian1, CUI Guodong2, XING Donghui1, LU Hongfeng1,*(
), WANG Yejia3,*(
)
Received:
2024-05-10
Revised:
2024-10-15
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
YU Lu, LI Xian, CUI Guodong, XING Donghui, LU Hongfeng, WANG Yejia. The impact of threshold pressure gradient on the production dynamics of gas hydrate reservoirs in the northern South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 178-194.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
上覆层厚度/m | 31 | 水合物层厚度/m | 35 |
三相混合层厚度/m | 15 | 游离气层厚度/m | 27 |
下伏层厚度/m | 32 | 上覆层水饱和度 | 1 |
上覆层孔隙度 | 0.3 | 上覆层渗透率/mD | 0.1 |
水合物层水合物饱和度 | 0.34 | 水合物层水饱和度 | 0.66 |
水合物层孔隙度 | 0.35 | 水合物层渗透率/mD | 2.9 |
三相混合层水合物饱和度 | 0.31 | 三相混合层气饱和度 | 0.15 |
三相混合层水饱和度 | 0.54 | 三相混合层孔隙度 | 0.33 |
三相混合层渗透率/mD | 1.5 | 游离气层气饱和度 | 0.078 |
游离气层水饱和度 | 0.912 | 游离气层孔隙度 | 0.32 |
游离气层渗透率/mD | 7.4 | 下伏层水饱和度 | 1 |
下伏层孔隙度 | 0.3 | 下伏层渗透率/mD | 0.1 |
孔隙水盐度 | 3% | 储层压缩系数/Pa-1 | 1×10-8 |
骨架密度/(kg·m-3) | 2 650 | 饱和水储层热传导率/(W·m-1·℃-1) | 3.1 |
干样储层热传导率/(W·m-1·℃-1) | 1.0 | 骨架比热/(J·kg-1·℃-1) | 1 000 |
Table 1 Physical parameters of the geological model for gas hydrate reservoirs. Adapted from [17,59].
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
上覆层厚度/m | 31 | 水合物层厚度/m | 35 |
三相混合层厚度/m | 15 | 游离气层厚度/m | 27 |
下伏层厚度/m | 32 | 上覆层水饱和度 | 1 |
上覆层孔隙度 | 0.3 | 上覆层渗透率/mD | 0.1 |
水合物层水合物饱和度 | 0.34 | 水合物层水饱和度 | 0.66 |
水合物层孔隙度 | 0.35 | 水合物层渗透率/mD | 2.9 |
三相混合层水合物饱和度 | 0.31 | 三相混合层气饱和度 | 0.15 |
三相混合层水饱和度 | 0.54 | 三相混合层孔隙度 | 0.33 |
三相混合层渗透率/mD | 1.5 | 游离气层气饱和度 | 0.078 |
游离气层水饱和度 | 0.912 | 游离气层孔隙度 | 0.32 |
游离气层渗透率/mD | 7.4 | 下伏层水饱和度 | 1 |
下伏层孔隙度 | 0.3 | 下伏层渗透率/mD | 0.1 |
孔隙水盐度 | 3% | 储层压缩系数/Pa-1 | 1×10-8 |
骨架密度/(kg·m-3) | 2 650 | 饱和水储层热传导率/(W·m-1·℃-1) | 3.1 |
干样储层热传导率/(W·m-1·℃-1) | 1.0 | 骨架比热/(J·kg-1·℃-1) | 1 000 |
[1] | SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. |
[2] | CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
[3] | CHERSKIY N V, TSAREV V, NIKITIN S. Investigation and prediction of conditions of accumulation of gas resources in gas-hydrate pools[J]. Petroleum Geology, 1985, 21: 65-89. |
[4] | DALLIMORE S, UCHIDA T, COLLETT T. Scientific results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie Delta, Northwest Territories, Canada[J]. Bulletin of the Geological Survey of Canada, 1999, 544: 295-311. |
[5] | LIU C L, MENG Q G, HE X L, et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration, 2015, 152: 67-74. |
[6] | SOLOVIEV V A. Global estimation of gas content in submarine gas hydrate accumulations[J]. Geologiya i Geofizika, 2002, 43(7): 648-661. |
[7] | PIÑERO E, MARQUARDT M, HENSEN C, et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions[J]. Biogeosciences, 2013, 10(2): 959-975. |
[8] | KLAUDA J B, SANDLER S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470. |
[9] | MORIDIS G J, SLOAN E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007, 48(6): 1834-1849. |
[10] | XIA Z Z, HOU J, LIU Y G, et al. Production characteristic investigation of the Class Ⅰ, Class Ⅱ and Class Ⅲ hydrate reservoirs developed by the depressurization and thermal stimulation combined method[J]. Journal of Petroleum Science and Engineering, 2017, 157: 56-67. |
[11] | LI S X, LI S, ZHENG R Y, et al. Strategies for gas production from Class 2 hydrate accumulations by depressurization[J]. Fuel, 2021, 286: 119380. |
[12] | MORIDIS G J, REAGAN M T, KIM S J, et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal, 2007, 14(4): 759-781. |
[13] | WANG X J, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. |
[14] | SU M, YANG R, WANG H B, et al. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gas-hydrate petroleum system[J]. Geologica Acta, 2016, 14(2): 79-100. |
[15] | SU M, SHA Z B, ZHANG C M, et al. Types, characteristics and significances of migrating pathways of gas-bearing fluids in the shenhu area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica(English Edition), 2017, 91(1): 219-231. |
[16] | 张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670-680. |
[17] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[18] | YANG L, YE J L, QIN X W, et al. Effects of the seepage capability of overlying and underlying strata of marine hydrate system on depressurization-induced hydrate production behaviors by horizontal well[J]. Marine and Petroleum Geology, 2021, 128: 105019. |
[19] | 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. |
[20] | TREHU A M, LONG P E, TORRES M E, et al. Three-dimensional distribution of gas hydrate beneath southern hydrate ridge: constraints from ODP leg 204[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 845-862. |
[21] | UCHIDA T, TAKEYA S, CHUVILIN E M, et al. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): 1-12. |
[22] | LU H L, KAWASAKI T, UKITA T, et al. Particle size effect on the saturation of methane hydrate in sediments-Constrained from experimental results[J]. Marine and Petroleum Geology, 2011, 28(10): 1801-1805. |
[23] | 张辉, 卢海龙, 梁金强, 等. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 2016, 61(3): 388-397. |
[24] | YU L, ZHANG L, ZHANG R, et al. Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method[J]. Energy, 2018, 160: 654-667. |
[25] | TORRES M E, TRÉHU A M, CESPEDES N, et al. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311[J]. Earth and Planetary Science Letters, 2008, 271(1/2/3/4): 170-180. |
[26] | GINSBURG G, SOLOVIEV V, MATVEEVA T, et al. Sediment grain-size control on gas hydrate presence, Sites 994, 995, and 997[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 164: 237-245. |
[27] | BEHSERESHT J, BRYANT S L. Sedimentological control on saturation distribution in Arctic gas-hydrate-bearing sands[J]. Earth and Planetary Science Letters, 2012, 341: 114-127. |
[28] | DALLIMORE S R, COLLETT T S. Intrapermafrost gas hydrates from a deep core hole in the Mackenzie Delta, Northwest Territories, Canada[J]. Geology, 1995, 23(6): 527. |
[29] | BAHK J J, KIM D H, CHUN J H, et al. Gas hydrate occurrences and their relation to host sediment properties: results from second ulleung basin gas hydrate drilling expedition, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 21-29. |
[30] | LEE J Y, KIM G Y, KANG N K, et al. Physical properties of sediments from the ulleung basin, East Sea: results from second ulleung basin gas hydrate drilling expedition, East Sea (Korea)[J]. Marine and Petroleum Geology, 2013, 47: 43-55. |
[31] | BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. |
[32] | YANG S X, ZHANG H Q, WU N Y, et al. High concentration hydrate in disseminated forms obtained in Shenhu area, North Slope of South China Sea[C]// Proceedings of the 6th international conference on gas hydrates(ICGH). Vancouver: ICGH, 2008. DOI: 10.14288/1.0041052. |
[33] | 陈芳, 周洋, 苏新, 等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质, 2011, 31(5): 95-100. |
[34] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学: 中国地质大学学报, 2013, 38(5): 907-915. |
[35] | WU N Y, ZHANG H Q, YANG S X, et al. Gas hydrate system of shenhu area, northern South China Sea: geochemical results[J]. Journal of Geological Research, 2011, 2011: 370298. |
[36] | LIU C L, YE Y G, MENG Q G, et al. The characteristics of gas hydrates recovered from Shenhu area in the South China Sea[J]. Marine Geology, 2012, 307: 22-27. |
[37] | PRADA A, CIVAN F. Modification of Darcy’s law for the threshold pressure gradient[J]. Journal of Petroleum Science and Engineering, 1999, 22(4): 237-240. |
[38] | DENG Y E, XIE H P, HUANG R Q, et al. Law of nonlinear flow in saturated clays and radial consolidation[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1427-1436. |
[39] | MITCHELL J K. Fundamentals of soil behavior[M]. New York: Wiley, 1976. |
[40] | LEI G, LIAO Q Z, PATIL S, et al. Effect of clay content on permeability behavior of argillaceous porous media under stress dependence: a theoretical and experimental work[J]. Journal of Petroleum Science and Engineering, 2019, 179: 787-795. |
[41] | CAI J C, XIA Y X, LU C, et al. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology, 2020, 115: 104282. |
[42] | 谷任国, 房营光. 极细颗粒黏土渗流离子效应的试验研究[J]. 岩土力学, 2009, 30(6): 1595-1598, 1603. |
[43] | 王秀艳, 刘长礼. 对粘性土孔隙水渗流规律本质的新认识[J]. 地球学报, 2003, 24(1): 91-95. |
[44] | 陈舟, 钱家忠, 姜常让, 等. 多孔介质地下水非达西渗流研究进展[J]. 合肥工业大学学报(自然科学版), 2008, 31(10): 1539-1543. |
[45] | MILLER R J, LOW P F. Threshold gradient for water flow in clay systems[J]. Soil Science Society of America Journal, 1963, 27(6): 605-609. |
[46] | WU D, BRANTSON E T, JU B S. Numerical simulation of water alternating gas flooding (WAG) using CO2 for high-salt argillaceous dolomite reservoir considering the impact of stress sensitivity and threshold pressure gradient[J]. Acta Geophysica, 2021, 69(4): 1349-1365. |
[47] | LIU W G, WU Z R, LI J J, et al. The seepage characteristics of methane hydrate-bearing clayey sediments under various pressure gradients[J]. Energy, 2020, 191: 116507. |
[48] | 王晓冬, 郝明强, 韩永新. 启动压力梯度的含义与应用[J]. 石油学报, 2013, 34(1): 188-191. |
[49] | БАСНИЕВ K C. Underground fluid dynamics[M]. Beijing: Petroleum Industry Press, 1992. |
[50] | 赵益忠, 程远方, 刘钰川, 等. 启动压力梯度对低渗透油藏微观渗流及开发动态的影响[J]. 油气地质与采收率, 2013, 20(1): 67-69, 73, 115. |
[51] | 何逸凡, 石洪福, 刘英宪. 基于启动压力梯度等效表征的低渗透油藏数值模拟[J]. 断块油气田, 2017, 24(4): 510-513. |
[52] | WANG X K, SHENG J J. Effect of low-velocity non-Darcy flow on well production performance in shale and tight oil reservoirs[J]. Fuel, 2017, 190: 41-46. |
[53] | CIVAN F. Modeling gas flow through hydraulically-fractured shale-gas reservoirs involving molecular-to-inertial transport regimes and threshold-pressure gradient[C]// Proceedings of the SPE annual technical conference and exhibition. New Orleans: SPE, 2013: SPE166324. |
[54] | NING B, XIANG Z P, LIU X S, et al. Production prediction method of horizontal wells in tight gas reservoirs considering threshold pressure gradient and stress sensitivity[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106750. |
[55] | 姜瑞忠, 倪庆东, 张春光, 等. 基于应力敏感的稠油油藏变启动压力梯度渗流模型与数值模拟研究[J]. 油气地质与采收率, 2021, 28(6): 54-62. |
[56] | WEI J G, ZHOU X F, ZHOU J M, et al. Recovery efficiency of tight oil reservoirs with different injection fluids: an experimental investigation of oil-water distribution feature[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107678. |
[57] | LU C, QIN X W, MA C, et al. Investigation of the impact of threshold pressure gradient on gas production from hydrate deposits[J]. Fuel, 2022, 319: 123569. |
[58] |
杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.
DOI |
[59] | QIN X W, LIANG Q Y, YE J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. |
[1] | KUANG Zenggui, REN Jinfeng, DENG Wei, LAI Hongfei, XIE Yingfeng. Drilling discoveries and accumulation characteristics of gas hydrate in the Northern Slope of South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 1-19. |
[2] | WU Nengyou, LI Yanlong, JIANG Yujing, SUN Jinsheng, XIE Wenwei, HU Gaowei, WANG Ren, YU Yanjiang, WANG Jintang, CHEN Qiang, SHEN Kaixiang, SUN Zhiwen, CHEN Mingtao. Proposal, subject connotation and prospect of marine natural gas hydrate engineering geology [J]. Earth Science Frontiers, 2025, 32(2): 216-229. |
[3] | LAI Hongfei, KUANG Zenggui, FANG Yunxin, XU Chenlu, REN Jinfeng, LIANG Jinqiang, LU Jing’an. Origin and genetic mechanism of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 36-60. |
[4] | JIN Jiapeng, WANG Xiujuan, DENG Wei, LI Qingping, LI Lixia, YU Han, ZHOU Jilin, WU Nengyou. Accumulation characteristics and occurrence differences of multitype gas hydrates in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 61-76. |
[5] | CHEN Yuhe, REN Jinfeng, LI Tingwei, XU Mengjie, WANG Xiaoxue, LIAO Yuantao. Developmental characteristics and evolution of seepage gas hydrate accumulation system in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 77-93. |
[6] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[7] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[8] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
[9] | WANG Jiahao, HU Xiumian, JIANG Jingxin, MA Chao, MA Pengfei. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma [J]. Earth Science Frontiers, 2024, 31(1): 500-510. |
[10] | LI Yudan, YOU Yuchun, ZENG Daqian, SHI Zhiliang, GU Shaohua, ZHANG Rui. Numerical simulation of water intrusion in wet gas reservoirs: A case study of the Changxing gas reservoir in Yuanba [J]. Earth Science Frontiers, 2023, 30(6): 341-350. |
[11] | ZHANG Yun, KANG Zhijiang, MA Junwei, ZHENG Huan, WU Dawei. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model [J]. Earth Science Frontiers, 2023, 30(6): 365-370. |
[12] | CHEN Wenlin, ZHENG Qiugen, HUANG Yiming, ZHANG Yi, LIN Changsong. Recover the Liyue Basin position in the southern margin of the South China Sea before seafloor spreading [J]. Earth Science Frontiers, 2023, 30(5): 420-429. |
[13] | LIANG Guanghe. Continental drift process revealed by high precision seismic survey in the central basin of the South China Sea [J]. Earth Science Frontiers, 2023, 30(5): 430-449. |
[14] | WANG Hairong, YU Chengqian, FAN Tailiang, CHAI Jingchao, WANG Hongyu, GAO Hongfang. Spatio-temporal relationship between two kinds of deep-water sedimentation on the Ying-Qiong slope, South China Sea [J]. Earth Science Frontiers, 2023, 30(4): 196-208. |
[15] | SUN Zhe, ZHANG Bin, CHEN Dawei, LI Yutao, WANG Hanxun. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation [J]. Earth Science Frontiers, 2023, 30(3): 465-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||