Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 77-93.DOI: 10.13745/j.esf.sf.2024.6.55
Previous Articles Next Articles
CHEN Yuhe1,2(), REN Jinfeng2,*(
), LI Tingwei2, XU Mengjie2, WANG Xiaoxue2, LIAO Yuantao1
Received:
2024-05-20
Revised:
2024-11-28
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
CHEN Yuhe, REN Jinfeng, LI Tingwei, XU Mengjie, WANG Xiaoxue, LIAO Yuantao. Developmental characteristics and evolution of seepage gas hydrate accumulation system in the northern South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 77-93.
典型地区 | 深部构造背景 | 水深/ m | 稳定带 底界 | 渗漏标志 | 储层沉积 特征 | 水合物赋存 特征 | 优势运移 通道 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
卡斯卡迪亚 大陆边缘 | 主动大陆边缘俯冲 增生楔 | 950~ 2 200 | 126~ 240 mbsf | 碳酸盐岩、 生物群落 | 黏土、细砂 | 薄层状、结核状、 分散状 | 断层 | [ | |
印度K-G盆地 | 被动大陆边缘盆内 局部背斜 | 1 519~ 2 815 | 2 200~ 2 500 m | 碳酸盐结核、 贝壳碎片 | 泥质碎屑 流沉积 | 块状、脉状、 透镜状 | 断层 | [ | |
韩国郁陵盆地 | 边缘海弧后盆地 局部背斜 | 1 800~ 2 100 | 141 mbsf | 海底丘状体、 水合物帽 | 黏土 | 脉状、结核状、 块状 | 气烟囱 | [ | |
南部水合物脊 | 主动大陆边缘 挤压背斜 | 780~ 1 200 | 124~ 134 mbsf | 碳酸盐岩、 羽状流 | 黏土、 粉砂质黏土 | 薄层状、结核状、 脉状 | 高渗透层 | [ | |
墨西哥湾 Terrebonne盆地 | 被动大陆边缘 盐构造 | 1 700~ 2 250 | 420~ 670 mbsf | 海底丘状体 | 黏土 | 裂隙充填 | 高渗透层 | [ | |
鄂霍次克海 | 边缘海弧后 盆地坳陷 | 300~ 1 200 | 665~ 960 m | 碳酸盐岩、 羽状流、生物群落 | 粉砂质黏土 | 薄层状、脉状、 块状 | 泥底辟 | [ | |
台西南盆地 | 边缘海盆地挤压 背斜 | 600~ 1 600 | 98~ 219 mbsf | 海底丘状体、 碳酸盐岩 | 粉砂质黏土 | 薄层状、块状、 结核状、分散状 | 断层 | [ | |
神狐海域 | 边缘海盆地坳陷 | 667~ 1 747 | 194~ 225 mbsf | 碳酸盐岩、 双壳类生物 | 含有孔虫的 黏土质粉砂 | 分散状 | 断 层 与 气 烟 囱 | [ | |
琼 东 南 盆 地 | 海马 冷泉 | 边缘 海盆 地低 凸起 | 1 250~ 1 500 | 130 mbsf | 海底羽状流、 麻坑、丘状体 | 黏土 | 块状 | [ | |
A区 | 1 500~ 1 700 | 160~ 170 mbsf | 羽状流、冷泉生 物、碳酸盐岩 | 黏土质粉砂 夹薄层粉砂 | 脉状、块状 结核状、厚层状 | [ | |||
B区 | 1 250~ 1 780 | 140 mbsf | 海底麻坑、丘状 体、生物群落 | 黏土质粉砂 | 脉状、片状、 块状、结核状 | [ |
Table 1 Distribution of representative seepage gas hydrates at home and abroad
典型地区 | 深部构造背景 | 水深/ m | 稳定带 底界 | 渗漏标志 | 储层沉积 特征 | 水合物赋存 特征 | 优势运移 通道 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|---|
卡斯卡迪亚 大陆边缘 | 主动大陆边缘俯冲 增生楔 | 950~ 2 200 | 126~ 240 mbsf | 碳酸盐岩、 生物群落 | 黏土、细砂 | 薄层状、结核状、 分散状 | 断层 | [ | |
印度K-G盆地 | 被动大陆边缘盆内 局部背斜 | 1 519~ 2 815 | 2 200~ 2 500 m | 碳酸盐结核、 贝壳碎片 | 泥质碎屑 流沉积 | 块状、脉状、 透镜状 | 断层 | [ | |
韩国郁陵盆地 | 边缘海弧后盆地 局部背斜 | 1 800~ 2 100 | 141 mbsf | 海底丘状体、 水合物帽 | 黏土 | 脉状、结核状、 块状 | 气烟囱 | [ | |
南部水合物脊 | 主动大陆边缘 挤压背斜 | 780~ 1 200 | 124~ 134 mbsf | 碳酸盐岩、 羽状流 | 黏土、 粉砂质黏土 | 薄层状、结核状、 脉状 | 高渗透层 | [ | |
墨西哥湾 Terrebonne盆地 | 被动大陆边缘 盐构造 | 1 700~ 2 250 | 420~ 670 mbsf | 海底丘状体 | 黏土 | 裂隙充填 | 高渗透层 | [ | |
鄂霍次克海 | 边缘海弧后 盆地坳陷 | 300~ 1 200 | 665~ 960 m | 碳酸盐岩、 羽状流、生物群落 | 粉砂质黏土 | 薄层状、脉状、 块状 | 泥底辟 | [ | |
台西南盆地 | 边缘海盆地挤压 背斜 | 600~ 1 600 | 98~ 219 mbsf | 海底丘状体、 碳酸盐岩 | 粉砂质黏土 | 薄层状、块状、 结核状、分散状 | 断层 | [ | |
神狐海域 | 边缘海盆地坳陷 | 667~ 1 747 | 194~ 225 mbsf | 碳酸盐岩、 双壳类生物 | 含有孔虫的 黏土质粉砂 | 分散状 | 断 层 与 气 烟 囱 | [ | |
琼 东 南 盆 地 | 海马 冷泉 | 边缘 海盆 地低 凸起 | 1 250~ 1 500 | 130 mbsf | 海底羽状流、 麻坑、丘状体 | 黏土 | 块状 | [ | |
A区 | 1 500~ 1 700 | 160~ 170 mbsf | 羽状流、冷泉生 物、碳酸盐岩 | 黏土质粉砂 夹薄层粉砂 | 脉状、块状 结核状、厚层状 | [ | |||
B区 | 1 250~ 1 780 | 140 mbsf | 海底麻坑、丘状 体、生物群落 | 黏土质粉砂 | 脉状、片状、 块状、结核状 | [ |
Fig.1 Cold seep characteristics observed by ROV:(a) Plume (modified after [18]); (b) Cold seep organisms; (c) Massive gas hydrates; (d) Carbonate rocks (modified after [18]).
Fig.8 (a) Variance attribute along the 2480 ms time window; (b) Time-domain contour map near site W09;(c) Interpreted seismic sections crossing Well W09.
Fig.9 (a) Variance attribute along the 2480 ms time window; (b) Time-domain contour map near site W08;(c) Interpreted seismic sections crossing Well W08.
Fig.10 (a) Interpreted seismic sections crossing Well W09 and W08; (b) The geographic location of the interpreted seismic profile crossing Well W09 and W08;(c) A stress model for the formation of escape pipes by hydraulic fracturing of the cap layer in Well W09;(d) A stress model for the formation of escape pipes by shear failure of the fault in Well W08.
Fig.11 (a) Thermodynamic three-phase equilibrium model; (b) Methane diffusion limited model;(c) Gas hydrate kinetic formation rate limited model (Modified after [2,25]).
Fig.12 Three stages of forming a seepage gas hydrate accumulation system (a) Cap fracture stage; (b) Upward breakthrough stage; (c) Stable leakage stage (Modified after [42]).
[1] | TRÉHU A, RUPPEL C, HOLLAND M, et al. Gas hydrates in marine sediments: lessons from scientific ocean drilling[J]. Oceanography, 2006, 19(4): 124-142. |
[2] | YOU K, FLEMINGS P B, MALINVERNO A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. |
[3] | PAGANONI M, CARTWRIGHT J A, FOSCHI M, et al. Relationship between fluid-escape pipes and hydrate distribution in offshore Sabah (NW Borneo)[J]. Marine Geology, 2018, 395: 82-103. |
[4] | RUGE S M, SCARSELLI N, BILAL A. 3D seismic classification of fluid escape pipes in the western Exmouth Plateau, North West Shelf of Australia[J]. Journal of the Geological Society, 2021, 178(3): jgs2020-096. |
[5] |
YE J L, WEI J G, LIANG J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104: 29-39.
DOI |
[6] | CHEN D F, SU Z, CATHLES L M. Types of gas hydrates in marine environments and their thermodynamic characteristics[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 723-737. |
[7] | DENG W, LIANG J Q, ZHANG W, et al. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 124: 104810. |
[8] |
KETZER M, PRAEG D, RODRIGUES L F, et al. Gas hydrate dissociation linked to contemporary ocean warming in the southern Hemisphere[J]. Nature Communications, 2020, 11(1): 3788.
DOI PMID |
[9] | RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168. |
[10] | RIEDEL M, NOVOSEL I, SPENCE G D, et al. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin[J]. Geological Society of America Bulletin, 2006, 118(1/2): 23-38. |
[11] | GULLAPALLI S, DEWANGAN P, KUMAR A, et al. Seismic evidence of free gas migration through the gas hydrate stability zone (GHSZ) and active methane seep in Krishna-Godavari offshore basin[J]. Marine and Petroleum Geology, 2019, 110: 695-705. |
[12] | CHUN J H, RYU B J, SON B K, et al. Sediment mounds and other sedimentary features related to hydrate occurrences in a columnar seismic blanking zone of the Ulleung Basin, East Sea, Korea[J]. Marine and Petroleum Geology, 2011, 28(10): 1787-1800. |
[13] | LÜDMANN T, WONG H K. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk[J]. Marine Geology, 2003, 201(4): 269-286. |
[14] | 匡增桂, 方允鑫, 梁金强, 等. 珠江口盆地东部海域高通量流体运移的地貌-地质-地球物理标志及其对水合物成藏的控制[J]. 中国科学: 地球科学, 2018, 48(8): 1033-1044. |
[15] | REN J F, CHENG C, JIANG T, et al. Faults and gas chimneys jointly dominate the gas hydrate accumulation in the Shenhu Area, northern South China Sea[J]. Frontiers in Marine Science, 2023, 10: 1254410. |
[16] | SU M, SHA Z B, ZHANG C M, et al. Types, characteristics and significances of migrating pathways of gas-bearing fluids in the Shenhu Area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica - English Edition, 2017, 91(1): 219-231. |
[17] |
杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7): 2905-2914.
DOI |
[18] | 何玉林, 梁金强, 石万忠, 等. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式[J]. 地球科学, 2022, 47(5): 1711-1727. |
[19] | 张伟, 梁金强, 陆敬安, 等. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业, 2020, 40(8): 90-99. |
[20] | LIU X L, FLEMINGS P B. Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 211-226. |
[21] | MEAZELL P K, FLEMINGS P B. The evolution of seafloor venting from Hydrate-sealed gas reservoirs[J]. Earth and Planetary Science Letters, 2022, 579: 117336. |
[22] | BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. |
[23] |
雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6): 801-820.
DOI |
[24] |
张金华, 方念乔, 魏伟, 等. 天然气水合物成藏条件与富集控制因素[J]. 中国石油勘探, 2018, 23(3): 35-46.
DOI |
[25] | 蔡峰, 吴能友, 闫桂京, 等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿, 2020, 36(9): 73-78. |
[26] | 张金华, 苏明, 魏伟, 等. 含气流体运移与天然气水合物成藏[J]. 地质科技情报, 2017, 36(2): 176-185. |
[27] | 胡高伟, 卜庆涛, 吕万军, 等. 主动、被动大陆边缘天然气水合物成藏模式对比[J]. 天然气工业, 2020, 40(8): 45-58. |
[28] | RIEDEL M, COLLETT T S, KUMAR P, et al. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India[J]. Marine and Petroleum Geology, 2010, 27(7): 1476-1493. |
[29] | RYU B-J, COLLETT T S, RIEDEL M, et al. Scientific results of the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2)[J]. Marine and Petroleum Geology, 2013, 47: 1-20. |
[30] |
梁金强, 付少英, 陈芳, 等. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
DOI |
[31] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[32] | SHA Z B, LIANG J Q, ZHANG G X, et al. A seepage gas hydrate system in northern South China Sea: seismic and well log interpretations[J]. Marine Geology, 2015, 366(8): 69-78. |
[33] | LIANG Q Y, HU Y, FENG D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. |
[34] | REN J F, QIU H J, KUANG Z G, et al. Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea[J]. China Geology, 2024, 7(1): 36-50. |
[35] | KUANG Z G, COOK A, REN J F, et al. A flat-lying transitional free gas to gas hydrate system in a Sand Layer in the Qiongdongnan Basin of the South China Sea[J]. Geophysical Research Letters, 2023, 50(24): e2023GL105744. |
[36] | 王秀娟, 靳佳澎, 郭依群, 等. 南海北部天然气水合物富集特征及定量评价[J]. 地球科学, 2021, 46(3): 1038-1057. |
[37] | CARTWRIGHT J, SANTAMARINA C. Seismic characteristics of fluid escape pipes in sedimentary basins: implications for pipe genesis[J]. Marine and Petroleum Geology, 2015, 65: 126-140. |
[38] | FLEMINGS P B. A concise guide to geopressure:origin, prediction, and applications[M]. Cambridge: Cambridge University Press, 2021. |
[39] | TRÉHU A M, FLEMINGS P B, BANGS N L, et al. Feeding methane vents and gas hydrate deposits at South Hydrate Ridge[J]. Geophysical Research Letters, 2004, 31(23): 2004GL021286. |
[40] | FINKBEINER T, ZOBACK M, FLEMINGS P, et al. Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 field, northern Gulf of Mexico[J]. AAPG Bulletin, 2001, 85(6): 1007-1031. |
[41] | LIU J L, HAECKEL M, RUTQVIST J, et al. The mechanism of methane gas migration through the gas hydrate stability zone: insights from numerical simulations[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 4399-4427. |
[42] | SMITH A J, FLEMINGS P B, LIU X, et al. The evolution of methane vents that pierce the hydrate stability zone in the world’s Oceans[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6337-6356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||