Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 61-76.DOI: 10.13745/j.esf.sf.2024.11.19
Previous Articles Next Articles
JIN Jiapeng1(), WANG Xiujuan1,2,*(
), DENG Wei3, LI Qingping4, LI Lixia4, YU Han3, ZHOU Jilin2, WU Nengyou1
Received:
2023-11-14
Revised:
2024-11-15
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
JIN Jiapeng, WANG Xiujuan, DENG Wei, LI Qingping, LI Lixia, YU Han, ZHOU Jilin, WU Nengyou. Accumulation characteristics and occurrence differences of multitype gas hydrates in the northern South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 61-76.
Fig.1 BSR distribution in different basins in the northern South China Sea and enlarged map of typical gas hydrate drilling areas a—Map of sedimentary basins and BSR distribution in the northern South China Sea; b—Distribution of multiple types of BSR in the submarine canyon zone of the Baiyun Sag, Pearl River Mouth Basin; c—BSR distribution in the mass-transported sediment zone of the Qiongdongnan Basin; d—BSR distribution in the thrust-extrusion tectonic zone of the Taixinan Basin; e—BSR distribution in the erosional submarine canyon zone of the Jieyang Sag, eastern Pearl River Mouth Basin.
Fig.2 Comparison of stratigraphic ages, lithologies, and depositional environments in the Pearl River Mouth Basin, Qiongdongnan Basin, and Taixinan Basin, northern South China Sea (modified after [12,23-24]).
Fig.3 Seismic profiles across typical gas hydrate occurrence areas in the northern slope of the South China Sea, showing various BSR reflection characteristics associated with multitype gas hydrate development. a, b, c—Seismic profiles across site GMGS2W08, cold seep site F, and Penghu Canyon in the Taixinan Basin show continuous and discontinuous BSR, high-amplitude reflections above the BSR, pull-up reflections, and strong carbonate reflections on the seafloor or buried in sediments. d, e, f—Seismic profiles of the Jieyang Sag in the Pearl River Mouth Basin show continuous, discontinuous, and paleo-BSR on the flanks of juvenile, young, and mature canyons, as well as the downward adjustment of BSR caused by canyon erosion. g, h, i—Seismic profiles of the Baiyun Sag in the Pearl River Mouth Basin across sites 18 &19, 11 &17, and 07 show vertical migration of high-flux fluids, thermogenic gas-related IIBSR, and dynamically adjusted BSR2. j, k, l, m, h—Seismic profiles in the Qiongdongnan Basin across sites W09, W08&W07, W01, W03&W04, and the Haima cold seep site show seismic reflection characteristics near the cold seep in the MTD area, BSR crosscutting with strata, and local sand-rich turbidite layers. n—Typical seismic profiles in the Zhongjian Basin show BSR crosscutting with strata and strong reflections above it. The locations of seismic profiles are shown in Fig.1.
Fig.4 Seismic profiles across typical basins in the northern slope of the South China Sea showing the regional tectonic features controlling gas hydrate occurrence a—Seismic profile of the Taixinan Basin showing mud volcanoes, faults, and their relationship with the shallow BSR and cold seep system under an active tectonic setting; b—Seismic profile of the Jieyang Sag in the Pearl River Mouth Basin showing the downward shift of the BSR caused by seafloor erosion above the basement uplift; c—Seismic profile of the Baiyun Sag in the Pearl River Mouth Basin showing magmatic volcanoes, intrusive sills, and associated faults and gas chimneys related to the shallow BSR; d—3D seismic profile of the Qiongdongnan Basin showing the relationship between basement uplift, faults, gas chimneys, and the occurrence of shallow cold seep-related gas hydrates. The locations of seismic profiles are shown in Fig.1.
构造 背景 | 盆地 | 构造 单元 | 水合物 赋存类型 | BSR特征 | 饱和度 | 储层条件 | 气源 条件 | 流体疏导条件 | 特殊地质要素 | 典型站位 |
---|---|---|---|---|---|---|---|---|---|---|
被动 大陆 边缘 | 珠江口 盆地 | 白云 凹陷 | 孔隙充填型、部分站位发现Ⅱ型水合物 | 连续、不连续、 羽状、II-BSR、 BSR2 | 中-高 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 混合 成因气 | 正断层、 气烟囱、 渗透性 地层 | 侵入岩席、单 向迁移峡谷 | GMGS3-W07、 W18&W19、 W11&W17 GMGS4-SC01、 SC02、SC03 |
云荔 低凸起 | 连续、不连续、 羽状BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 火山复合体 | ||||||
揭阳 凹陷 | 连续、不连续、 古BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 海底侵蚀峡谷、 基底隆起 | ||||||
琼东南 盆地 | 松南 低凸起 | 裂隙充填型与孔隙充填型叠置、部分站位发现Ⅱ型水合物 | BSR与MTD底 重合、上拱、仅 局部发育穿层 的BSR | 中-高 | 细粒泥质粉砂 或粉砂质泥 | 热成因 气为主 | 正断层、 气烟囱 | 基底隆起 | GMGS5-W07、 W08、W09 | |
陵南 低凸起 | 中-高 | 细粒泥质粉 砂—粗粒砂 | GMGS6-W01、 W03、W04 | |||||||
主动 大陆 边缘 | 台西 南盆地 | 裂隙充填型与孔隙充填型叠置 | 连续、不连续、 BSR上拱、冷泉 下部缺失 | 中 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 生物成 因气、 局部热 成因气 | 逆冲断层、 正断层、 气烟囱 | 底辟构造 | GMGS2-W08、 W09、W16、 F站位 |
Table 1 Geological controls and occurrence characteristics of multitype gas hydrates in different basins in the northern slope of the South China Sea
构造 背景 | 盆地 | 构造 单元 | 水合物 赋存类型 | BSR特征 | 饱和度 | 储层条件 | 气源 条件 | 流体疏导条件 | 特殊地质要素 | 典型站位 |
---|---|---|---|---|---|---|---|---|---|---|
被动 大陆 边缘 | 珠江口 盆地 | 白云 凹陷 | 孔隙充填型、部分站位发现Ⅱ型水合物 | 连续、不连续、 羽状、II-BSR、 BSR2 | 中-高 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 混合 成因气 | 正断层、 气烟囱、 渗透性 地层 | 侵入岩席、单 向迁移峡谷 | GMGS3-W07、 W18&W19、 W11&W17 GMGS4-SC01、 SC02、SC03 |
云荔 低凸起 | 连续、不连续、 羽状BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 火山复合体 | ||||||
揭阳 凹陷 | 连续、不连续、 古BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 海底侵蚀峡谷、 基底隆起 | ||||||
琼东南 盆地 | 松南 低凸起 | 裂隙充填型与孔隙充填型叠置、部分站位发现Ⅱ型水合物 | BSR与MTD底 重合、上拱、仅 局部发育穿层 的BSR | 中-高 | 细粒泥质粉砂 或粉砂质泥 | 热成因 气为主 | 正断层、 气烟囱 | 基底隆起 | GMGS5-W07、 W08、W09 | |
陵南 低凸起 | 中-高 | 细粒泥质粉 砂—粗粒砂 | GMGS6-W01、 W03、W04 | |||||||
主动 大陆 边缘 | 台西 南盆地 | 裂隙充填型与孔隙充填型叠置 | 连续、不连续、 BSR上拱、冷泉 下部缺失 | 中 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 生物成 因气、 局部热 成因气 | 逆冲断层、 正断层、 气烟囱 | 底辟构造 | GMGS2-W08、 W09、W16、 F站位 |
Fig.6 Differences in the geological controls of multitype gas hydrate occurrences under different tectonic-sedimentary settings in the northern South China Sea
[1] | RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168. |
[2] | RENSSEN H, BEETS C J, FICHEFET T, et al. Modeling the climate response to a massive methane release from gas hydrates[J]. Paleoceanography, 2004, 19(2): PA2010. |
[3] | DAVIES R J, MORALES MAQUEDA M Á, LI A, et al. Millennial-scale shifts in the methane hydrate stability zone due to Quaternary climate change[J]. Geology, 2017, 45(11): 1027-1030. |
[4] | ZHANG G X, LIANG J Q, LU J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. |
[5] | ZHONG G F, LIANG J Q, GUO Y Q, et al. Integrated core log facies analysis and depositional model of the gas hydrate-bearing sediments in the northeastern continental slope, South China Sea[J]. Marine and Petroleum Geology, 2017, 86: 1159-1172. |
[6] | 李杰, 何敏, 颜承志, 等. 南海北部揭阳凹陷天然气水合物的地震异常特征分析[J]. 海洋与湖沼, 2020, 51(2): 274-282. |
[7] | JIN J P, WANG X J, HE M, et al. Downward shift of gas hydrate stability zone due to seafloor erosion in the eastern Dongsha Island, South China Sea[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1188-1200. |
[8] | ZHANG H Q, YANG S X, WU N Y, et al. Successful and surprising results for China’s first gas hydrate drilling expedition[J]. Fire in the Ice, 2007, 7(3): 6-9. |
[9] | YANG S X, ZHANG M, LIANG J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(2): 1-5. |
[10] | YANG S X, LIANG J Q, LEI Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea[J]. Fire in the Ice, 2017, 17(1): 7-11. |
[11] |
YE J L, WEI J G, LIANG J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104: 29-39.
DOI |
[12] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[13] | LU Y T, LUAN X W, LYU F L, et al. Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 84: 274-288. |
[14] | COLLETT T S, JOHNSON A, KNAPP C, et al. Natural gas hydrates: a review[M]//COLLETT T S. Natural gas hydrates:energy resource potential and associated geologic hazards. Tulsa: American Association of Petroleum Geologists, 2009: 146-219. |
[15] | SLOAN E D, KOH C A. Clathrate hydrates of natural gases, 3rd ed[M]. Boca Raton: CRC Press, 2007. |
[16] | KLAPP S A, MURSHED M M, PAPE T, et al. Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 207-217. |
[17] | PAGANONI M, CARTWRIGHT J A, FOSCHI M, et al. Relationship between fluid-escape pipes and hydrate distribution in offshore Sabah (NW Borneo)[J]. Marine Geology, 2018, 395: 82-103. |
[18] | WEI J G, FANG Y X, LU H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea area, South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 622-628. |
[19] | LU H L, SEO Y T, LEE J W, et al. Complex gas hydrate from the Cascadia margin[J]. Nature, 2007, 445(7125): 303-306. |
[20] | BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. |
[21] | MCINTOSH K, VAN AVENDONK H, LAVIER L, et al. Inversion of a hyper-extended rifted margin in the southern central range of Taiwan[J]. Geology, 2013, 41(8): 871-874. |
[22] | 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12): 3280-3291. |
[23] | 何家雄, 夏斌, 陈恭洋, 等. 台西南盆地中新生界石油地质与油气勘探前景[J]. 新疆石油地质, 2006, 27(4): 398-402. |
[24] | 米立军, 何敏, 翟普强, 等. 珠江口盆地深水区白云凹陷高热流背景油气类型与成藏时期综合分析[J]. 中国海上油气, 2019, 31(1): 1-12. |
[25] | 王秀娟. 天然气水合物储层特性与定量评价[M]. 北京: 科学出版社, 2023. |
[26] | ZHANG G X, WANG X J, LI L, et al. Gas hydrate accumulation related to pockmarks and faults in the Zhongjiannan Basin, South China Sea[J]. Frontiers in Earth Science, 2022, 10: 902469. |
[27] | YANG S X, ZHANG G X, ZHANG M, et al. A complex gas hydrate system in the Dongsha Area, South China Sea:results from Drilling Expedition GMGS2[C]// Proceedings of the 8th international conference on gas hydrates (ICGH8-2014). Beijing, China, 2014. |
[28] | BERNDT C, CHI W C, JEGEN M, et al. Tectonic controls on gas hydrate distribution off SW Taiwan[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2): 1164-1184. |
[29] | WANG X J, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. |
[30] | JIN J P, WANG X J, ZHU Z Y, et al. Physical characteristics of high concentrated gas hydrate reservoir in the Shenhu production test area, South China Sea[J]. Journal of Oceanology and Limnology, 2023, 41(2): 694-709. |
[31] |
杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.
DOI |
[32] | 康冬菊, 梁金强, 匡增桂, 等. 元素俘获能谱测井在神狐海域天然气水合物储层评价中的应用[J]. 天然气工业, 2018, 38(12): 54-60. |
[33] | JIN J P, WANG X J, GUO Y Q, et al. Geological controls on the occurrence of recently formed highly concentrated gas hydrate accumulations in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2020, 116: 104294. |
[34] | TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1/2): 225-241. |
[35] | QIAN J, WANG X J, COLLETT T S, et al. Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom simulating reflector in the South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 662-674. |
[36] | MENG M M, LIANG J Q, LU J A, et al. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, Northwest South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177: 103628. |
[37] | 张伟, 梁金强, 陆敬安, 等. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业, 2020, 40(8): 90-99. |
[38] | REN J F, CHENG C, XIONG P F, et al. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110630. |
[39] | WANG X J, LIU B, QIAN J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168: 27-37. |
[40] |
BERNDT C, FESEKER T, TREUDE T, et al. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science, 2014, 343(6168): 284-287.
DOI PMID |
[41] | SHA Z B, LIANG J Q, ZHANG G X, et al. A seepage gas hydrate system in northern South China Sea: seismic and well log interpretations[J]. Marine Geology, 2015, 366(8): 69-78. |
[42] | WANG X J, ZHOU J L, LI L, et al. Bottom simulating reflections in the South China Sea[M] //MIENERTJ, BERNDTC, TRÉHUA M, et al. World Atlas of submarine gas hydrates in continental margins. Cham, Switzerland: Springer International Publishing, 2022: 163-172. |
[43] |
陈芳, 周洋, 吴聪, 等. 珠江口盆地东部陆坡末次冰期天然气水合物-冷泉活动的记录与时间[J]. 地学前缘, 2017, 24(4): 66-77.
DOI |
[44] | 匡增桂, 方允鑫, 梁金强, 等. 珠江口盆地东部海域高通量流体运移的地貌-地质-地球物理标志及其对水合物成藏的控制[J]. 中国科学: 地球科学, 2018, 48(8): 1033-1044. |
[45] | YAN P, DENG H, LIU H L. The geological structure and prospect of gas hydrate over the Dongsha Slope, South China Sea[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 645-658. |
[46] | 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4): 1-8. |
[47] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[48] | YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. |
[49] | 施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22. |
[50] | ZHU M Z, GRAHAM S, PANG X, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present: implications for paleoceanographic circulation, northern South China Sea[J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. |
[51] | 颜承志, 施和生, 李元平, 等. 珠江口盆地白云凹陷天然气水合物与浅层气识别及成藏控制因素[J]. 中国海上油气, 2018, 30(6): 25-32. |
[52] | ZHAO F, ALVES T M, WU S G, et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)[J]. Earth and Planetary Science Letters, 2016, 445: 79-91. |
[53] | SUN Q L, JACKSON C A L, MAGEE C, et al. Deeply buried ancient volcanoes control hydrocarbon migration in the South China Sea[J]. Basin Research, 2020, 32(1): 146-162. |
[54] | 吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6): 1641-1650. |
[55] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学, 2013, 38(5): 907-915. |
[56] | 苏明, 张成, 解习农, 等. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例[J]. 中国科学: 地球科学, 2014, 44: 1807-1820. |
[57] | 张功成, 曾清波, 苏龙, 等. 琼东南盆地深水区陵水17-2大气田成藏机理[J]. 石油学报, 2016, 37(S1): 34-46. |
[58] | 张迎朝, 甘军, 杨希冰, 等. 琼东南盆地陵水凹陷构造演化及其对深水大气田形成的控制作用[J]. 海洋地质前沿, 2017, 33(10): 22-31. |
[59] | 甘军, 张迎朝, 梁刚, 等. 琼东南盆地深水区烃源岩沉积模式及差异热演化[J]. 地球科学, 2019, 44(8): 2627-2635. |
[60] | DENG W, LIANG J Q, KUANG Z G, et al. The variation of free gas distribution within the seeping seafloor hydrate stability zone and its link to hydrate formations in the Qiongdongnan Basin[J]. Acta Geophysica, 2022, 70(3): 1115-1136. |
[61] | LIANG J Q, DENG W, LU J A, et al. A fast identification method based on the typical geophysical differences between submarine shallow carbonates and hydrate bearing sediments in the northern South China Sea[J]. China Geology, 2020, 3(1): 16-27. |
[62] | WEI J G, WU T T, ZHU L Q, et al. Mixed gas sources induced co-existence of sI and sII gas hydrates in the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 128: 105024. |
[63] | LAI H F, QIU H J, LIANG J Q, et al. Geochemical characteristics and gas-to-gas correlation of two leakage-type gas hydrate accumulations in the Western Qiongdongnan Basin, South China Sea[J]. Acta Geologica Sinica(English Edition), 2022, 96(2): 680-690. |
[64] |
郭依群, 杨胜雄, 梁金强, 等. 南海北部神狐海域高饱和度天然气水合物分布特征[J]. 地学前缘, 2017, 24(4): 24-31.
DOI |
[65] | SUN L Y, WANG X J, HE M, et al. Thermogenic gas controls high saturation gas hydrate distribution in the Pearl River Mouth Basin: evidence from numerical modeling and seismic anomalies[J]. Ore Geology Reviews, 2020, 127: 103846. |
[66] | LAI H F, QIU H J, KUANG Z G, et al. Integrated signatures of secondary microbial gas within gas hydrate reservoirs: a case study in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2022, 136: 105486. |
[67] | YOU K H, FLEMINGS P B, MALINVERNO A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. |
[1] | LIU Yuan-Zheng, MA Jin, MA Wen-Chao. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. [J]. Earth Science Frontiers, 20140101, 21(1): 150-160. |
[2] | KUANG Zenggui, REN Jinfeng, DENG Wei, LAI Hongfei, XIE Yingfeng. Drilling discoveries and accumulation characteristics of gas hydrate in the Northern Slope of South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 1-19. |
[3] | YANG Jinxiu, WANG Chen, XING Lanchang, WEI Wei, ZHANG Wei, HAN Weifeng, ZHAO Li, LIU Kunyi. Fluid migration and seabed methane seepage associated with marine gas hydrate systems [J]. Earth Science Frontiers, 2025, 32(2): 113-125. |
[4] | JI Mengfei, WANG Jiliang, WANG Weiwei, ZHANG Jiecheng, LIU Xueqin, WU Shiguo. Geophysical characterization of gas hydrate reservoir in fine-grained sediment in Shenhu area [J]. Earth Science Frontiers, 2025, 32(2): 126-139. |
[5] | LIANG Chen, JIANG Tao, KUANG Zenggui, HU Yipan, YANG Chengzhi, REN Jinfeng, LAI Hongfei. Sedimentary time and genesis mechanism of natural gas hydrate reservoirs in the Qiongdongnan Basin [J]. Earth Science Frontiers, 2025, 32(2): 140-152. |
[6] | GUAN Wen, YANG Hailin, LU Hailong. Research on factors affecting the phase equilibrium of natural gas hydrates in porous media [J]. Earth Science Frontiers, 2025, 32(2): 153-165. |
[7] | SHEN Pengfei, HOU Jiaxin, LÜ Tao, BI Haoyuan, HE Juan, LI Xiaosen, LI Gang. Study on the influence of reservoir permeability evolution around production wells on production capacity of natural gas hydrate [J]. Earth Science Frontiers, 2025, 32(2): 166-177. |
[8] | YU Lu, LI Xian, CUI Guodong, XING Donghui, LU Hongfeng, WANG Yejia. The impact of threshold pressure gradient on the production dynamics of gas hydrate reservoirs in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 178-194. |
[9] | WANG Xiujuan, HAN Lei, LIU Junzhou, JIN Jiapeng, KUANG Zenggui, ZHOU Jilin. Geophysical characteristics and identification of the coexistence of gas hydrate and free gas [J]. Earth Science Frontiers, 2025, 32(2): 20-35. |
[10] | WU Nengyou, LI Yanlong, JIANG Yujing, SUN Jinsheng, XIE Wenwei, HU Gaowei, WANG Ren, YU Yanjiang, WANG Jintang, CHEN Qiang, SHEN Kaixiang, SUN Zhiwen, CHEN Mingtao. Proposal, subject connotation and prospect of marine natural gas hydrate engineering geology [J]. Earth Science Frontiers, 2025, 32(2): 216-229. |
[11] |
LI Yang, LI Xiaoguang, CHEN Chang, CUI Xiangdong, LAI Peng, GUO Pengchao, REN Ni, LIU Yang, QI Xuechen, GUO Meiling.
Reservoir characteristics and evaluation of fine-grained sedimentary rocks in E2 |
[12] | LI Fenglei, LIN Chengyan, WANG Jiao, REN Lihua, ZHANG Guoyin, ZHU Yongfeng, LI Shiyin, ZHANG Yintao, GUAN Baozhu. Structure analysis and intelligent prediction of carbonate fractured-vuggy reservoirs in ultra-deep fracture zone [J]. Earth Science Frontiers, 2025, 32(2): 311-331. |
[13] | LAI Hongfei, KUANG Zenggui, FANG Yunxin, XU Chenlu, REN Jinfeng, LIANG Jinqiang, LU Jing’an. Origin and genetic mechanism of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 36-60. |
[14] | CHEN Yuhe, REN Jinfeng, LI Tingwei, XU Mengjie, WANG Xiaoxue, LIAO Yuantao. Developmental characteristics and evolution of seepage gas hydrate accumulation system in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 77-93. |
[15] | MENG Tao, MU Xing, SHI Quanqing, LI Jiyan, LIU Peng, FANG Zhengwei, ZHAO Xian, NIU Huapeng. The implications of basement rock diagenesis on reservoir development: A case study of Archean basement rock in Jiyang Depression [J]. Earth Science Frontiers, 2025, 32(1): 401-417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||