Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 113-125.DOI: 10.13745/j.esf.sf.2024.6.54
Previous Articles Next Articles
YANG Jinxiu1,2(), WANG Chen2, XING Lanchang3, WEI Wei4,*(
), ZHANG Wei1, HAN Weifeng4, ZHAO Li2, LIU Kunyi2
Received:
2024-06-30
Revised:
2024-11-20
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
YANG Jinxiu, WANG Chen, XING Lanchang, WEI Wei, ZHANG Wei, HAN Weifeng, ZHAO Li, LIU Kunyi. Fluid migration and seabed methane seepage associated with marine gas hydrate systems[J]. Earth Science Frontiers, 2025, 32(2): 113-125.
Fig.1 (a) A seismic profile from offshore Mauritania showing the BSR distribution; (b) Phase equilibrium curve of gas hydrate stability; (c) Schematic diagram of the gas hydrate system.
工区位置 | LLGHSZ 深度/m | 相关甲烷渗透特征 | CH4通量 | 诱发机制 | 参考文献 |
---|---|---|---|---|---|
Rio Grande Cone (RGC) of SE Brazil | 515 | 麻坑、自生碳酸盐 | 100 mmol m-2·a-1 | 海洋变暖 | [ |
US Atlantic margin | 505 | 自生碳酸盐、深水珊瑚、 羽状流 | / | 中层水持续升温、 地层侵蚀 | [ |
Continental margin of West Spitsbergen | 400 | 羽状流 | / | 向北流动的西斯匹 次卑尔根的暖流 | [ |
Offshore Western Svalbard | 360~410 | 羽状流、有孔虫δ13C值偏负 | 30,550 mmol m-2·a-1 | 海洋变暖 | [ |
Arctic Ocean | 290 | 自生碳酸盐 | 区域上BSR下移20 m, 释放100 Gt C | 海洋变暖 | [ |
Continental slopes of the Black Sea | 200~300 | 麻坑 | / | 海洋变暖 | [ |
Table 1 Characteristics of LLGHSZ, related methane seepage distributions, and triggering mechanisms in different regions
工区位置 | LLGHSZ 深度/m | 相关甲烷渗透特征 | CH4通量 | 诱发机制 | 参考文献 |
---|---|---|---|---|---|
Rio Grande Cone (RGC) of SE Brazil | 515 | 麻坑、自生碳酸盐 | 100 mmol m-2·a-1 | 海洋变暖 | [ |
US Atlantic margin | 505 | 自生碳酸盐、深水珊瑚、 羽状流 | / | 中层水持续升温、 地层侵蚀 | [ |
Continental margin of West Spitsbergen | 400 | 羽状流 | / | 向北流动的西斯匹 次卑尔根的暖流 | [ |
Offshore Western Svalbard | 360~410 | 羽状流、有孔虫δ13C值偏负 | 30,550 mmol m-2·a-1 | 海洋变暖 | [ |
Arctic Ocean | 290 | 自生碳酸盐 | 区域上BSR下移20 m, 释放100 Gt C | 海洋变暖 | [ |
Continental slopes of the Black Sea | 200~300 | 麻坑 | / | 海洋变暖 | [ |
工区位置 | BSR深度/ (TWT s-1) | 水合物系统 | 相关通道 | GHL位置 | 参考 文献 |
---|---|---|---|---|---|
Offshore Mauritania | 3.0~0.88 | BSR,GHL,FGZ | 断层、底辟 | 位于GHSZ底界之上 | [ |
Niger Delta | 3.6~3.2 | BSR,GHL,GZ | 断层、气烟囱 | 位于GHSZ内部 | [ |
Qiongdongnan Basin | 2.5~2.0 | BSR | 气烟囱 | [ | |
Active Margins off SW Taiwan | 2.4~2.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
LW3 Area: The Northern Slope of the South China Sea | 2.0~1.9 | BSR,GHL,FGZ | 断层 | 位于GHSZ底界之上 | [ |
Krishna-Godavari Basin | 3.13~2.75 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Shenhu area in South China Sea | 2.1~1.9 | BSR,FGZ | 泥底辟、气烟囱、 渗透性砂岩层 | [ | |
Porangahau Ridge | 3.6~3.4 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Offshore Colombia | 2.5~1.5 | BSR,FGZ | 断层、渗透性砂岩层 | [ | |
Eastern South Korea Plateau (ESKP),East Sea | 1.4~1.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Fiordland margin SW | 2.9~1.2 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
Northern deep-water Gulf of Mexico | 2.42~1.74 | BSR,GHL,FGZ | 断层、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Svyatogor Ridge | 2.25~2.20 | BSR,GHL,FGZ | 断层、气烟囱 | 位于GHSZ底界之上、 位于GHSZ内部 | [ |
Cameroon margin,offshore West Africa | 2.5~1.9 | BSR,FGZ | 断层、气烟囱 | [ | |
Southern Hikurangi margin (New Zealand) | 1.15~0.90 | BSR,GHL,FGZ | 渗透性砂岩层 | GHL位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Northwestern Sea of Okhotsk | 1.0~0.6 | BSR,FGZ | 泥底辟、气烟囱、断层 | [ | |
Eastern margin of the Sea of Japan | 1.7~1.5 | BSR,GHL,FGZ | 气烟囱、断层 | 位于GHSZ内部,高于BSR | [ |
Offshore Oregon | 1.3~1.2 | BSR,GHL,FGZ | 气烟囱、断层、 渗透性砂岩层 | 位于GHSZ内部,高于BSR | [ |
Chilean margin offshore of Valdivia (40°S) | 4.38~2.5 | BSR,GHL,FGZ | 断层 | 含水合物层位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Offshore mid-Norway | 1.8~1.5 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
Table 2 Relationships between gas hydrate systems and associated fluid migration conduits in different regions worldwide
工区位置 | BSR深度/ (TWT s-1) | 水合物系统 | 相关通道 | GHL位置 | 参考 文献 |
---|---|---|---|---|---|
Offshore Mauritania | 3.0~0.88 | BSR,GHL,FGZ | 断层、底辟 | 位于GHSZ底界之上 | [ |
Niger Delta | 3.6~3.2 | BSR,GHL,GZ | 断层、气烟囱 | 位于GHSZ内部 | [ |
Qiongdongnan Basin | 2.5~2.0 | BSR | 气烟囱 | [ | |
Active Margins off SW Taiwan | 2.4~2.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
LW3 Area: The Northern Slope of the South China Sea | 2.0~1.9 | BSR,GHL,FGZ | 断层 | 位于GHSZ底界之上 | [ |
Krishna-Godavari Basin | 3.13~2.75 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Shenhu area in South China Sea | 2.1~1.9 | BSR,FGZ | 泥底辟、气烟囱、 渗透性砂岩层 | [ | |
Porangahau Ridge | 3.6~3.4 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Offshore Colombia | 2.5~1.5 | BSR,FGZ | 断层、渗透性砂岩层 | [ | |
Eastern South Korea Plateau (ESKP),East Sea | 1.4~1.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Fiordland margin SW | 2.9~1.2 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
Northern deep-water Gulf of Mexico | 2.42~1.74 | BSR,GHL,FGZ | 断层、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Svyatogor Ridge | 2.25~2.20 | BSR,GHL,FGZ | 断层、气烟囱 | 位于GHSZ底界之上、 位于GHSZ内部 | [ |
Cameroon margin,offshore West Africa | 2.5~1.9 | BSR,FGZ | 断层、气烟囱 | [ | |
Southern Hikurangi margin (New Zealand) | 1.15~0.90 | BSR,GHL,FGZ | 渗透性砂岩层 | GHL位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Northwestern Sea of Okhotsk | 1.0~0.6 | BSR,FGZ | 泥底辟、气烟囱、断层 | [ | |
Eastern margin of the Sea of Japan | 1.7~1.5 | BSR,GHL,FGZ | 气烟囱、断层 | 位于GHSZ内部,高于BSR | [ |
Offshore Oregon | 1.3~1.2 | BSR,GHL,FGZ | 气烟囱、断层、 渗透性砂岩层 | 位于GHSZ内部,高于BSR | [ |
Chilean margin offshore of Valdivia (40°S) | 4.38~2.5 | BSR,GHL,FGZ | 断层 | 含水合物层位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Offshore mid-Norway | 1.8~1.5 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
Fig.3 Schematic diagram of the vertical distribution relationship between type I and type II fluid migration conduits and the BSR. a—Faults; b—Gas chimneys; c—Diapirs, unconformity surfaces, and mud volcanoes.
Fig.5 Distribution characteristics of polygonal faults (a) A seismic profile from the Pearl River Mouth Basin; (b) A seismic profile from the Lower Congo Basin (modified from [60]).
Fig.8 Schematic diagram of the spatial distribution relationships among submarine methane seepage features, gas hydrate systems, and related fluid migration conduits.
[1] | QIN X W, LIANG Q Y, YE J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. |
[2] | KVENVOLDEN K A. Gas hydrates: geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187. |
[3] | BIASTOCH A, TREUDE T, RÜPKE L H, et al. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification[J]. Geophysical Research Letters, 2011, 38(8). |
[4] |
KETZER M, PRAEG D, RODRIGUES L F, et al. Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere[J]. Nature Communications, 2020, 11: 3788.
DOI PMID |
[5] | RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168. |
[6] | COLLETT T, JOHNSON A, KNAPP C, et al. Natural gas hydrates: a review[M]//COLLETT T, JOHNSON A, KNAPP C, et al. Natural gas hydrates: energy resource potential and associated geologic hazards. AAPG Memoir 89: American Association of Petroleum Geologists, 2009: 146-219. |
[7] | JAMES R H, BOUSQUET P, BUSSMANN I, et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review[J]. Limnology and Oceanography, 2016, 61(S1): S283-S299. |
[8] |
KENNETT J P, CANNARIATO K G, HENDY I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288(5463): 128-133.
PMID |
[9] | MASLIN M, OWEN M, BETTS R, et al. Gas hydrates: past and future geohazard?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393. |
[10] | PORTNOV A, SMITH A J, MIENERT J, et al. Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf[J]. Geophysical Research Letters, 2013, 40(15): 3962-3967. |
[11] | LI Y Y, CHANG J Y, LU H L. Geochemical characteristics of gases associated with natural gas hydrate[J]. Frontiers in Marine Science, 2022, 9: 968647. |
[12] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[13] | YANG J X, DAVIES R J. Gravity-driven faults: Migration pathways for recycling gas after the dissociation of marine gas hydrates[J]. Marine Geology, 2013, 336: 1-9. |
[14] | YANG J X, LU M Y, YAO Z G, et al. A geophysical review of the seabed methane seepage features and their relationship with gas hydrate systems[J]. Geofluids, 2021: 9953026. |
[15] | YANG J X. 3D seismic analysis of subsurface gas migration and the gas hydrate system offshore Mauritania[D]. Durham: Durham University, 2013. |
[16] | GRAVES C A, STEINLE L, REHDER G, et al. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6185-6201. |
[17] | PANIERI G, GRAVES C A, JAMES R H. Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 521-537. |
[18] |
BERNDT C, FESEKER T, TREUDE T, et al. Temporal constraints on hydrate-controlled methane seepage off svalbard[J]. Science, 2014, 343(6168): 284-287.
DOI PMID |
[19] | SKARKE A, RUPPEL C, KODIS M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7(9): 657-661. |
[20] | WESTBROOK G K, THATCHER K E, ROHLING E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15): L15608. |
[21] | RIEDEL M, FREUDENTHAL T, BIALAS J, et al. In-situ borehole temperature measurements confirm dynamics of the gas hydrate stability zone at the upper Danube deep sea fan, Black Sea[J]. Earth and Planetary Science Letters, 2021, 563: 116869. |
[22] | DICKENS G R. Modeling the global carbon cycle with a gas hydrate capacitor:significance for the latest Paleocene thermal maximum. In: Natural Gas Hydrates:occurrence, distribution, and detection[M]. Washington D C: American Geophysical Union, 2013: 19-38. |
[23] | DICKENS G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 169-183. |
[24] |
CRÉMIÈRE A, LEPLAND A, CHAND S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J]. Nature Communications, 2016, 7: 11509.
DOI PMID |
[25] | KENNETT J P. Methane hydrates in Quaternary climate change: The clathrate gun hypothesis[M]. Washington, D C: American Geophysical Union, 2003. |
[26] | BINTANJA R, VAN DE WAL R S W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles[J]. Nature, 2008, 454(7206): 869-872. |
[27] | MIENERT J, VANNESTE M, BÜNZ S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide[J]. Marine and Petroleum Geology, 2005, 22(1/2): 233-244. |
[28] | HESTER K C, PELTZER E T, WALZ P M, et al. A natural hydrate dissolution experiment on complex multi-component hydrates on the sea floor[J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6747-6756. |
[29] | SASSEN R, MILKOV A V, OZGUL E, et al. Gas venting and subsurface charge in the Green Canyon area, Gulf of Mexico continental slope evidence of a deep bacterial methane source?[J]. Organic Geochemistry, 2003, 34(10): 1455-1464. |
[30] | LIANG Q Y, XIAO X, ZHAO J, et al. Geochemistry and sources of hydrate-bound gas in the shenhu area, northern South China Sea: insights from drilling and gas hydrate production tests[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109459. |
[31] | ZHANG W, LIANG J Q, WEI J G, et al. Origin of natural gases and associated gas hydrates in the shenhu area, northern South China Sea: results from the China gas hydrate drilling expeditions[J]. Journal of Asian Earth Sciences, 2019, 183: 103953. |
[32] | SU P B, LIANG J Q, PENG J, et al. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea[J]. Journal of Asian Earth Sciences, 2018, 168: 57-76. |
[33] | POHLMAN J W, CANUEL E A, CHAPMAN N R, et al. The origin of thermogenic gas hydrates on the northern Cascadia Margin as inferred from isotopic (13C/12C and D/H) and molecular composition of hydrate and vent gas[J]. Organic Geochemistry, 2005, 36(5): 703-716. |
[34] | YANG J X, DAVIES R J, HUUSE M. Gas migration below gas hydrates controlled by mass transport complexes, offshore Mauritania[J]. Marine and Petroleum Geology, 2013, 48: 366-378. |
[35] | 杨金秀, 宋朋霖, 何巍巍, 等. 尼日尔三角洲前缘挤压带的古今BSRs分布特征[J]. 石油与天然气地质, 2019, 40(6): 1295-1307. |
[36] | LIN L F, LIU C S, BERNDT C, et al. Gas hydrate and fluid-related seismic indicators across the passive and active margins off SW Taiwan[M]//MIENERT J, BERNDT C, TRÉHU A M, et al. World atlas of submarine gas hydrates in continental margins. Cham: Springer International Publishing, 2022: 173-181. |
[37] | YAN C Z, SHI H S, WANG X J, et al. The occurrence, saturation and distribution of gas hydrate identified from three dimensional seismic data in the Lw3 area: the northern slope of the South China Sea[C]//Day 1 Mon, November 02, 2020. November 2-6, 2020. Kuala Lumpur, Malaysia. OTC, 2020. |
[38] | SATYAVANI N, SAIN K. Seismic insights into bottom simulating reflection (BSR) in the Krishna-Godavari Basin, eastern margin of India[J]. Marine Georesources & Geotechnology, 2015, 33(3): 191-201. |
[39] | FU C, YU X H, HE Y L, et al. Different initial density turbidite sediments with coarse grain injection and their corresponding flow pattern: additional insights from numerical simulation in a study case of South China Sea[J]. Petroleum Research, 2019, 4(1): 19-28. |
[40] | ZHONG S L, ZHANG J F, LUO J S, et al. Geological characteristics of mud volcanoes and diapirs in the northern continental margin of the South China Sea: implications for the mechanisms controlling the genesis of fluid leakage structures[J]. Geofluids, 2021: 5519264. |
[41] | SCHWALENBERG K, WOOD W, PECHER I, et al. Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand[J]. Marine Geology, 2010, 272(1/2/3/4): 89-98. |
[42] | RINCÓN-MARTÍNEZ D, RUGE S M, SILVA ARIAS A. Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore[J]. Journal of South American Earth Sciences, 2022, 116: 103800. |
[43] | HOROZAL S, KIM G Y, CUKUR D, et al. Sedimentary and structural evolution of the eastern South Korea Plateau (ESKP), East Sea (Japan sea)[J]. Marine and Petroleum Geology, 2017, 85: 70-88. |
[44] | CRUTCHLEY G J, GORMAN A R, FOHRMANN M. Investigation of the role of gas hydrates in continental slope stability west of Fiordland, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2007, 50(4): 357-364. |
[45] | DAI J C, XU H B, SNYDER F, et al. Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deepwater gulf of Mexico[J]. The Leading Edge, 2004, 23(1): 60-66. |
[46] | WAGHORN K A, BÜNZ S, PLAZA-FAVEROLA A, et al. 3-D seismic investigation of a gas hydrate and fluid flow system on an active mid-ocean ridge; svyatogor ridge, fram strait[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2325-2341. |
[47] | LE A N, HUUSE M, REDFERN J, et al. Seismic characterization of a Bottom Simulating Reflection (BSR) and plumbing system of the Cameroon margin, offshore West Africa[J]. Marine and Petroleum Geology, 2015, 68: 629-647. |
[48] | SHANKAR U, OJHA M, GHOSH R. Assessment of gas hydrate reservoir from inverted seismic impedance and porosity in the northern Hikurangi margin, New Zealand[J]. Marine and Petroleum Geology, 2021, 123: 104751. |
[49] | LÜDMANN T, WONG H K. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk[J]. Marine Geology, 2003, 201(4): 269-286. |
[50] | NAKAJIMA T, KAKUWA Y, YASUDOMI Y, et al. Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan[J]. Journal of Asian Earth Sciences, 2014, 90: 228-242. |
[51] | LIU X L, FLEMINGS P B. Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 211-226. |
[52] | RODRIGO C, VERA E, GONZÁLEZ-FERNÁNDEZ A. Seismic analysis and distribution of a bottom-simulating reflector (BSR) in the Chilean margin offshore of Valdivia (40° S)[J]. Journal of South American Earth Sciences, 2009, 27(1): 1-10. |
[53] | MIENERT J, TRÉHU A M, BERNDT C, et al. Finding and using the world’s gas hydrates[M]//MIENERT J, BERNDT C, TRÉHU A M, et al. World atlas of submarine gas hydrates in continental margins. Cham: Springer International Publishing, 2022: 33-52. |
[54] | CARTWRIGHT J, WATTRUS N, RAUSCH D, et al. Recognition of an early Holocene polygonal fault system in lake superior: implications for the compaction of fine-grained sediments[J]. Geology, 2004, 32(3): 253. |
[55] | XIA Y, YANG J X, ZHANG W, et al. The different roles of fluid conduits for marine gas hydrate systems: a global review[J]. International Geology Review, 2024, 66(4): 855-883. |
[56] | HAN J H, LENG J G, WANG Y M. Characteristics and genesis of the polygonal fault system in southern slope of the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2016, 70: 163-174. |
[57] | SHOULDERS S J, CARTWRIGHT J, HUUSE M. Large-scale conical sandstone intrusions and polygonal fault systems in Tranche 6, Faroe-Shetland Basin[J]. Marine and Petroleum Geology, 2007, 24(3): 173-188. |
[58] | SUN Q L, WU S G, CARTWRIGHT J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315: 1-14. |
[59] | HUSTOFT S, MIENERT J, BÜNZ S, et al. High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology, 2007, 245(1/2/3/4): 89-106. |
[60] | ANDRESEN K J, HUUSE M. ‘bulls-eye’ pockmarks and polygonal faulting in the lower Congo Basin: relative timing and implications for fluid expulsion during shallow burial[J]. Marine Geology, 2011, 279(1/2/3/4): 111-127. |
[61] | GAY A, BERNDT C. Cessation/reactivation of polygonal faulting and effects on fluid flow in the Vøring Basin, Norwegian Margin[J]. Journal of the Geological Society, 2007, 164(1): 129-141. |
[62] | COOK A E, GOLDBERG D, KLEINBERG R L. Fracture-controlled gas hydrate systems in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9): 932-941. |
[63] | BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. |
[64] | BOSWELL R, FRYE M, SHELANDER D, et al. Architecture of gas-hydrate-bearing sands from walker ridge 313, green canyon 955, and alaminos canyon 21: northern deepwater gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 134-149. |
[65] | COLLETT T S, RIEDEL M, BOSWELL R, et al. Indian national gas hydrate program expedition 01 report[R]. US Geological Survey, 2015. |
[66] | SUESS E. Marine cold seeps[M]//TIMMIS K N. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 185-203. |
[67] | TALUKDER A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting[J]. Terra Nova, 2012, 24(4): 255-272. |
[68] | GULLAPALLI S, DEWANGAN P, KUMAR A, et al. Seismic evidence of free gas migration through the gas hydrate stability zone (GHSZ) and active methane seep in Krishna-Godavari offshore basin[J]. Marine and Petroleum Geology, 2019, 110: 695-705. |
[69] |
梁金强, 付少英, 陈芳, 等. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
DOI |
[70] | 尉建功, 杨胜雄, 梁金强, 等. 海洋钻探对甲烷渗漏的影响: 以南海北部天然气水合物钻探GMGS2-16站位为例[J]. 海洋地质与第四纪地质, 2018, 38(5): 63-70. |
[71] | BROTHERS D S, RUPPEL C, KLUESNER J W, et al. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin[J]. Geophysical Research Letters, 2014, 41(1): 96-101. |
[72] | KLUESNER J W, SILVER E A, BANGS N L, et al. High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa Rica[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(3): 519-539. |
[73] | CRUTCHLEY G J, KLAESCHEN D, PLANERT L, et al. The impact of fluid advection on gas hydrate stability: investigations at sites of methane seepage offshore costa rica[J]. Earth and Planetary Science Letters, 2014, 401: 95-109. |
[74] | SHEMIN G, DEEV E, VERNIKOVSKY V A, et al. Jurassic paleogeography and sedimentation in the northern West Siberia and South Kara Sea, Russian Arctic and Subarctic[J]. Marine and Petroleum Geology, 2019, 104: 286-312. |
[1] | CHEN Yuhe, REN Jinfeng, LI Tingwei, XU Mengjie, WANG Xiaoxue, LIAO Yuantao. Developmental characteristics and evolution of seepage gas hydrate accumulation system in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 77-93. |
[2] | JIN Jiapeng, WANG Xiujuan, DENG Wei, LI Qingping, LI Lixia, YU Han, ZHOU Jilin, WU Nengyou. Accumulation characteristics and occurrence differences of multitype gas hydrates in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 61-76. |
[3] | XING Huilin, WANG Jianchao, PANG Shuo, WANG Ruize, LIU Dongyu, MA Zihan, ZHANG Yuling, TAN Yuyang. Deep sea-lithosphere fluid exchange in subduction zones and its effects: A critical review [J]. Earth Science Frontiers, 2022, 29(5): 246-254. |
[4] | BENG Gui-Dong, FU Xiao-Fei, HU Cai-Zhi. Research status of polygonal fault systems. [J]. Earth Science Frontiers, 2010, 17(4): 50-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||