[1] |
CHEN J, WANG Y H, LANG X M, et al. Energy-efficient methods for production methane from natural gas hydrates[J]. Journal of Energy Chemistry, 2015, 24(5): 552-558.
DOI
|
[2] |
张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022, 38(1): 35-66.
|
[3] |
孙玉景, 周立发, 李越. CO2海洋封存的发展现状[J]. 地质科技情报, 2018, 37(4): 212-218.
|
[4] |
王林军, 张学民, 张东, 等. 水合物法储存温室气体二氧化碳的可行性分析[J]. 中国沼气, 2011, 29(6): 28-32.
|
[5] |
宋琦. 多元复杂体系水合物生成的实验及热动力学模型研究[D]. 常州: 常州大学, 2010.
|
[6] |
MATSUI H, JIA J, TSUJI T, et al. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide-nitrogen mixtures[J]. Fuel, 2020, 263: 116640.
|
[7] |
王英梅, 张兆慧, 牛爱丽, 等. 二氧化碳水合物稳定储存的影响因素研究进展[J]. 化工进展, 2021, 40(增刊2): 364-372.
|
[8] |
GIAVARINI C, MACCIONI F, POLITI M, et al. CO2 hydrate: formation and dissociation compared to methane hydrate[J]. Energy and Fuels, 2007, 21(6): 3284-3291.
|
[9] |
曹学文, 杨凯然, 夏闻竹, 等. CO2水合物分解实验及分解速率模型[J]. 天然气工业, 2021, 41(7): 152-159.
|
[10] |
唐建峰, 李旭光, 李玉星, 等. 天然气水合物稳定性试验[J]. 天然气工业, 2008, 28(5): 125-128, 155.
|
[11] |
孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 49(11): 10-20.
|
[12] |
LI L J, ZHAO S H, WANG S L, et al. CO2 hydrate formation kinetics based on a chemical affinity model in the presence of GO and SDS[J]. RSC Advances, 2020, 10(21): 12451-12459.
|
[13] |
GE B B, LI X Y, ZHONG D L, et al. Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin[J]. Energy, 2022, 244(PA): 122665.
|
[14] |
陈玉龙. 氨基酸促进甲烷水合物形成的机理研究[D]. 广州: 华南理工大学, 2016.
|
[15] |
VELUSWAMY H P, KUMAR A, KUMAR R, et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application[J]. Applied Energy, 2017, 188: 190-199.
|
[16] |
INKONG K, RANGSUNVIGIT P, KULPRATHIPANJA S, et al. Effects of temperature and pressure on the methane hydrate formation with the presence of tetrahydrofuran (THF) as a promoter in an unstirred tank reactor[J]. Fuel, 2019, 255: 115705.
|
[17] |
谢文俊, 李小森, 邹颖楠, 等. 含环戊烷体系中二氧化碳水合物形成分解热特性[J]. 化工进展, 2020, 39(1): 129-136.
DOI
|
[18] |
CAI Y H, CHEN Y L, LI Q J, et al. CO2 hydrate formation promoted by a natural amino acid L-Methionine for possible application to CO2 capture and storage[J]. Energy Technology, 2017, 5(8): 1195-1199.
|
[19] |
LIU X J, REN J J, CHEN D Y, et al. Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: implication for hydrate-based CO2 storage[J]. Chemical Engineering Journal, 2022, 438: 135504.
|
[20] |
刘政文. 氨基酸促进二氧化碳水合物形成动力学研究[D]. 广州: 华南理工大学, 2020.
|
[21] |
VELUSWAMY H P, HONG Q W, LINGA P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid[J]. Crystal Growth and Design, 2016, 16(10): 5932-5945.
|
[22] |
LIU Y, CHEN B Y, CHEN Y L, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage[J]. Energy Technology, 2015, 3(8): 815-819.
|
[23] |
LEE Y, KIM Y, LEE J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter[J]. Applied energy, 2015, 150: 120-127.
|
[24] |
陈钟秀, 顾飞燕, 胡望明. 化工热力学[M]. 北京: 化学工业出版社, 2012: 129, 305-319.
|
[25] |
王英梅, 张兆慧, 刘生浩, 等. 促进剂体系中二氧化碳水合物常压分解[J]. 化工进展, 2022, 41(增刊1): 141-149.
|
[26] |
李阅明. 管输节流降压过程中水合物形成研究[J]. 内蒙古石油化工, 2009, 35(16): 8-10.
|
[27] |
陈雪萍, 张鹏, 吴青柏. “自保护”态CO2水合物分解动力及影响因素[J]. 天然气地球科学, 2020, 31(2): 184-193.
DOI
|
[28] |
FALENTY A, KUHS W F. “Self-preservation” of CO2 gas hydrate surface microstructure and ice perfection[J]. Journal of Physical Chemistry B, 2009, 113(49): 15975-15988.
|
[29] |
FALENTY A, KUHS W F, GLOCKZIN M, et al. “Self-preservation” of CH4 hydrates for gas transport technology: pressure-temperature dependence and ice microstructures[J]. Energy and Fuels, 2014, 28(10): 6275-6283.
|