Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 440-448.DOI: 10.13745/j.esf.sf.2024.6.38
Previous Articles Next Articles
LI Chao1,2(), CHENG Donghui1,2,*(
), MA Chenglong1, QIAO Xiaoying1,2, HUANG Mengnan1, WANG Yishi1,2, YANG Yinke1,2
Received:
2023-04-07
Revised:
2024-04-16
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
LI Chao, CHENG Donghui, MA Chenglong, QIAO Xiaoying, HUANG Mengnan, WANG Yishi, YANG Yinke. Characteristics of water density variation in capillaries of different diameters and its implications for soil water density changes[J]. Earth Science Frontiers, 2025, 32(1): 440-448.
溶液类型 | 浓度/(g·L-1) | 体相密度/(g·cm-3) |
---|---|---|
蒸馏水 | 0.992 56 | |
NaCl溶液 | 1.0 | 0.994 52 |
5.0 | 0.996 44 | |
MgSO4溶液 | 1.0 | 0.994 22 |
5.0 | 0.998 44 | |
CaCl2溶液 | 1.0 | 0.995 16 |
5.0 | 0.998 22 | |
AlCl3溶液 | 1.0 | 0.993 84 |
5.0 | 0.996 56 |
Table 1 Bulk density measurements of distilled water and four electrolyte solutions
溶液类型 | 浓度/(g·L-1) | 体相密度/(g·cm-3) |
---|---|---|
蒸馏水 | 0.992 56 | |
NaCl溶液 | 1.0 | 0.994 52 |
5.0 | 0.996 44 | |
MgSO4溶液 | 1.0 | 0.994 22 |
5.0 | 0.998 44 | |
CaCl2溶液 | 1.0 | 0.995 16 |
5.0 | 0.998 22 | |
AlCl3溶液 | 1.0 | 0.993 84 |
5.0 | 0.996 56 |
离子 | r/nm | Δr/nm | n | ΔG /(kJ·mol-1) |
---|---|---|---|---|
Na+ | 0.102 | 0.116 | 3.5 | -365 |
Ca2+ | 0.100 | 0.171 | 7.2 | -1 505 |
Mg2+ | 0.072 | 0.227 | 10 | -1 830 |
Al3+ | 0.053 | 0.342 | 20.4 | -4 525 |
Cl- | 0.181 | 0.043 | 2.0 | -340 |
0.230 | 0.043 | 3.1 | -1 080 |
Table 2 Ionic radius (r) of hydrated ions, hydration shell radius (Δr), number of water molecules in the hydration shell (n), and Gibbs free energy (ΔG) of hydrated ions. Adapted from [9].
离子 | r/nm | Δr/nm | n | ΔG /(kJ·mol-1) |
---|---|---|---|---|
Na+ | 0.102 | 0.116 | 3.5 | -365 |
Ca2+ | 0.100 | 0.171 | 7.2 | -1 505 |
Mg2+ | 0.072 | 0.227 | 10 | -1 830 |
Al3+ | 0.053 | 0.342 | 20.4 | -4 525 |
Cl- | 0.181 | 0.043 | 2.0 | -340 |
0.230 | 0.043 | 3.1 | -1 080 |
r/μm | pc/kPa | pe/kPa | ρwc/(g·mL-1) | ρwm/(g·mL-1) |
---|---|---|---|---|
50 | -2.912 | -625.3 | 0.999 621 1 | 1.221 |
75 | -1.941 | -194.5 | 0.999 819 6 | 1.000 |
100 | -1.456 | -0.823 | 0.999 909 0 | 0.982 |
150 | -0.971 | -0.675 | 0.999 909 2 | 0.978 |
200 | -0.728 | -0.784 | 0.999 909 3 | 0.969 |
250 | -0.582 | -0.635 | 0.999 909 4 | 0.974 |
320 | -0.455 | -0.397 | 0.999 909 6 | 1.002 |
530 | -0.275 | -0.356 | 0.999 909 7 | 1.000 |
Table 3 Water density calculated using capillary force and inlet suction
r/μm | pc/kPa | pe/kPa | ρwc/(g·mL-1) | ρwm/(g·mL-1) |
---|---|---|---|---|
50 | -2.912 | -625.3 | 0.999 621 1 | 1.221 |
75 | -1.941 | -194.5 | 0.999 819 6 | 1.000 |
100 | -1.456 | -0.823 | 0.999 909 0 | 0.982 |
150 | -0.971 | -0.675 | 0.999 909 2 | 0.978 |
200 | -0.728 | -0.784 | 0.999 909 3 | 0.969 |
250 | -0.582 | -0.635 | 0.999 909 4 | 0.974 |
320 | -0.455 | -0.397 | 0.999 909 6 | 1.002 |
530 | -0.275 | -0.356 | 0.999 909 7 | 1.000 |
[1] | ZHANG C, LU N. What is the range of soil water density?critical reviews with a unified model[J]. Reviews of Geophysics, 2018, 56(3): 532-562. |
[2] | 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011. |
[3] | MARTIN R T. Adsorbed water on clay: a review[J]. Clays and Clay Minerals (National Conference on Clays and Clay Minerals), 1960, 9: 28-70. |
[4] | BAHRAMIAN Y, BAHRAMIAN A, JAVADI A. Confined fluids in clay interlayers: a simple method for density and abnormal pore pressure interpretation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521: 260-271. |
[5] | MILLINGTON R J, QUIRK J P. Permeability of porous media[J]. Nature, 1959, 183(4658): 387-388. |
[6] |
程东会, 李慧, 王军, 等. 准饱和多孔介质中地下水驱替速率、 圈闭气体饱和度和准饱和渗透系数的关系[J]. 地学前缘, 2022, 29(3): 256-262.
DOI |
[7] | MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. |
[8] | LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5): 461-482. |
[9] | MARCUS Y. Thermodynamics of solvation of ions.part 5.: gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(18): 2995-2999. |
[10] | 滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009. |
[11] | ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. Burlington, MA: Academic Press, 2011. |
[12] |
ALEXIADIS A, KASSINOS S. Molecular simulation of water in carbon nanotubes[J]. Chemical Reviews, 2008, 108(12): 5014-5034.
DOI PMID |
[13] | LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051. |
[14] |
DUAN C H, KARNIK R, LU M C, et al. Evaporation-induced cavitation in nanofluidic channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3688-3693.
DOI PMID |
[15] |
ZHENG Q, DURBEN D J, WOLF G H, et al. Liquids at large negative pressures: water at the homogeneous nucleation limit[J]. Science, 1991, 254(5033): 829-832.
PMID |
[16] | LIN NY, GUY B M, HERMES M, et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions[J]. Physical Review Letters, 2015, 115(22): 228304. |
[17] | BRADY J F, MORRIS J F. Microstructure of strongly sheared suspensions and its impact on rheology and diffusion[J]. Journal of Fluid Mechanics, 1997, 348: 103-139. |
[18] | WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32. |
[19] | BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. The Journal of chemical physics, 1989, 91(3): 1866-1874. |
[20] | 邓耿, 尉志武. 液态水的结构研究进展[J]. 科学通报, 2016, 61(30): 3181-3187. |
[21] | SPURK J, AKSEL N. Fluid mechanics[M]. Berlin: Springer Science and Business Media, 2007. |
[22] | DURST F, LOY T. Investigations of laminar flow in a pipe with sudden contraction of cross sectionalarea[J]. Computers and Fluids, 1985, 13(1): 15-36. |
[23] | 齐鄂荣, 曾玉红. 工程流体力学[M]. 武汉: 武汉大学出版社, 2005. |
[24] | 赵孝保. 工程流体力学[M]. 3版. 南京: 东南大学出版社, 2012. |
[25] | BULLEN P R, CHEESEMAN D J, HUSSAIN L A, et al. The determination of pipe contraction pressure loss coefficients for incompressible turbulent flow[J]. InternationalJournal of Heat and Fluid Flow, 1987, 8(2): 111-118. |
[26] | CHANG CC, CHENG D H. Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces[J]. Hydrology and Earth System Sciences, 2018, 22(9): 4621-4632. |
[27] | 程东会, 常琛朝, 钱康, 等. 考虑薄膜水的利用介质粒度分布获取水土特征曲线的方法[J]. 水科学进展, 2017, 28(4): 534-542. |
[1] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[2] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[3] | GUO Yongli, XIAO Qiong, ZHANG Cheng, WU Qing. Characteristics of petroleum hydrocarbon-polluted karst groundwater environment: A case study of groundwater source in Dawu, Zibo City, northern China [J]. Earth Science Frontiers, 2023, 30(2): 539-547. |
[4] | LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions [J]. Earth Science Frontiers, 2022, 29(3): 76-87. |
[5] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[6] | LIN Congye, SUN Zhanxue, GAO Bai, HUA Enxiang, ZHANG Haiyang, YANG Fen, GAO Yang, JIANG Wenbo, JIANG Xinyue. Hydrochemical characteristics and formation mechanism of groundwater in Lhasa area, China [J]. Earth Science Frontiers, 2021, 28(5): 49-58. |
[7] | ZHANG Zhenyu, XU Weiwei, DENG Yaping, REN Jinghua, SHI Xiaoqing, WU Jichun. Complex resistivity properties and spectral parameters of TCE contaminated soils [J]. Earth Science Frontiers, 2021, 28(5): 114-124. |
[8] | WANG Wenxiang, LI Wenpeng, CAI Yuemei, AN Yonghui, SHAO Xinmin, WU Xi, YIN Dechao. The hydrogeochemical evolution of groundwater in the middle reaches of the Heihe River Basin [J]. Earth Science Frontiers, 2021, 28(4): 184-193. |
[9] | CAO Ruwen, ZHOU Xun, CHEN Binghua, LI Zhuang. Hydrogeochemical characteristics and genetic analysis of the Chaluo hot springs and geysers in the Batang County of Sichuan Province [J]. Earth Science Frontiers, 2021, 28(4): 361-372. |
[10] | LÜ Xiaoli, LIU Jingtao, ZHOU Bing, ZHU Liang, ZHANG Yuxi. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin [J]. Earth Science Frontiers, 2021, 28(2): 426-436. |
[11] | HOU Guohua,GAO Maosheng,DANG Xianzhang. Hydrochemical characteristics and salinization causes of shallow groundwater in Caofeidian, Tangshan City [J]. Earth Science Frontiers, 2019, 26(6): 49-57. |
[12] | LIAO Lei,HE Jiangtao,PENG Cong,ZHANG Zhenguo,WANG Lei. Methodologies in calculating apparent background values of minor components in groundwater: a case study of the Liujiang Basin [J]. Earth Science Frontiers, 2018, 25(1): 267-275. |
[13] | . [J]. Earth Science Frontiers, 2017, 24(1): 321-331. |
[14] | YANG Ping,WANG Xinmin,LU Laijun. Predicting the trends of pollutant concentrations in groundwater based on the combined method of the improved quantification theory and RBF artificial neural network [J]. Earth Science Frontiers, 2016, 23(3): 151-155. |
[15] | MAO Re-Yu, GUO Hua-Meng-*, GU Yong-Feng, JIANG Yu-Xiao, CAO Yong-Sheng, DIAO Wei-Guang, WANG Zhen. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin,Inner Mongolia. [J]. Earth Science Frontiers, 2016, 23(2): 260-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||