Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 76-87.DOI: 10.13745/j.esf.sf.2022.1.44
Previous Articles Next Articles
LIAO Fu1(), LUO Xin2, XIE Yueqing3, YI Lixin4, LI Hailong5, WANG Guangcai1,*()
Received:
2022-01-17
Revised:
2022-02-16
Online:
2022-05-25
Published:
2022-04-28
Contact:
WANG Guangcai
CLC Number:
LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions[J]. Earth Science Frontiers, 2022, 29(3): 76-87.
[1] |
SANTOS I R, CHEN X, LECHER A L, et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry[J]. Nature Reviews: Earth and Environment, 2021, 2(5): 307-323.
DOI URL |
[2] |
KALBUS E, REINSTORF F, SCHIRMER M. Measuring methods for groundwater-surface water interactions: a review[J]. Hydrology and Earth System Sciences, 2006, 10(6): 873-887.
DOI URL |
[3] |
STEGEN J C, FREDRICKSON J K, WILKINS M J, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover[J]. Nature Communications, 2016, 7: 11237.
DOI URL |
[4] |
MAYFIELD K K, EISENHAUER A, SANTIAGO RAMOS D P, et al. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba[J]. Nature Communications, 2021, 12: 148.
DOI URL |
[5] |
LUIJENDIJK E, GLEESON T, MOOSDORF N. Fresh groundwater discharge insignificant for the World’s oceans but important for coastal ecosystems[J]. Nature Communications, 2020, 11: 1260.
DOI URL |
[6] |
CONNOLLY C T, CARDENAS M B, BURKART G A, et al. Groundwater as a major source of dissolved organic matter to Arctic coastal waters[J]. Nature Communications, 2020, 11: 1479.
DOI URL |
[7] |
CORREA R E, CARDENAS M B, RODOLFO R S, et al. Submarine groundwater discharge releases CO2 to a coral reef[J]. ACS EST Water, 2021, 1(8): 1756-1764.
DOI URL |
[8] |
LIANG X Y, ZHAN H B, SCHILLING K. Spatiotemporal responses of groundwater flow and aquifer-river exchanges to flood events[J]. Water Resources Research, 2018, 54(3): 1513-1532.
DOI URL |
[9] |
CARDENAS M B, MARKOWSKI M S. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river[J]. Environmental Science and Technology, 2011, 45(4): 1407-1411.
DOI URL |
[10] |
MICHAEL H A, MULLIGAN A E, HARVEY C F. Seasonal oscillations in water exchange between aquifers and the coastal ocean[J]. Nature, 2005, 436(7054): 1145-1148.
DOI URL |
[11] |
LIAO F, WANG G C, SHI Z M, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: approaches using stable isotopes (δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638.
DOI URL |
[12] | KIRO Y, YECHIELI Y, LYAKHOVSKY V, et al. Time response of the water table and saltwater transition zone to a base level drop[J]. Water Resources Research, 2008, 44(12): W12442. |
[13] | 郭占荣, 马志勇, 章斌, 等. 采用 222Rn示踪胶州湾的海底地下水排泄及营养盐输入[J]. 地球科学, 2013, 38(5): 1073-1080, 1090. |
[14] |
BURNETT W C, AGGARWAL P K, AURELI A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment, 2006, 367(2/3): 498-543.
DOI URL |
[15] |
BURNETT W C, DULAIOVA H. Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily[J]. Continental Shelf Research, 2006, 26(7): 862-873.
DOI URL |
[16] | COOK P G, LAMONTAGNE S, BERHANE D, et al. Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6[J]. Water Resources Research, 2006, 42(10): W10411. |
[17] |
CORBETT D R, DILLON K, BURNETT W, et al. Estimating the groundwater contribution into Florida Bay via natural tracers, 222Rn and CH4[J]. Limnology and Oceanography, 2000, 45(7): 1546-1557.
DOI URL |
[18] |
DIMOVA N T, BURNETT W C, CHANTON J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122.
DOI URL |
[19] |
KLUGE T, ILMBERGER J, VON ROHDEN C, et al. Tracing and quantifying groundwater inflow into lakes using a simple method for radon-222 analysis[J]. Hydrology and Earth System Sciences, 2007, 11(5): 1621-1631.
DOI URL |
[20] | LIAO F, CARDENAS M B, FERENCZ S B, et al. Tracing bank storage and hyporheic exchange dynamics using 222Rn: virtual and field tests and comparison with other tracers[J]. Water Resources Research, 2021, 57(5): e2020WR028960. |
[21] |
ZHANG Y, LI H L, WANG X J, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn[J]. Journal of Hydrology, 2016, 533: 103-113.
DOI URL |
[22] | COOK P G, LAMONTAGNE S, BERHANE D, et al. Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6[J]. Water Resources Research, 2006, 42(10): W10411. |
[23] |
SANTOS I R, PETERSON R N, EYRE B D, et al. Significant lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes[J]. Marine Chemistry, 2010, 121(1/2/3/4): 37-48.
DOI URL |
[24] |
FREI S, GILFEDDER B S. FINIFLUX: an implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon[J]. Water Resources Research, 2015, 51(8): 6776-6786.
DOI URL |
[25] |
XIE Y Q, COOK P G, SHANAFIELD M, et al. Uncertainty of natural tracer methods for quantifying river-aquifer interaction in a large river[J]. Journal of Hydrology, 2016, 535: 135-147.
DOI URL |
[26] |
SU X S, XU W, YANG F T, et al. Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer 222Rn in data poor regions: a case study in Northwest China[J]. Hydrological Processes, 2015, 29(6): 979-990.
DOI URL |
[27] |
LUO X, JIAO J J, LIU Y, et al. Evaluation of water residence time, submarine groundwater discharge, and maximum new production supported by groundwater borne nutrients in a coastal upwelling shelf system[J]. Journal of Geophysical Research: Oceans, 2018, 123(1): 631-655.
DOI URL |
[28] |
HOEHN E, CIRPKA O A. Assessing residence times of hyporheic ground water in two alluvial flood plains of the Southern Alps using water temperature and tracers[J]. Hydrology and Earth System Sciences, 2006, 10(4): 553-563.
DOI URL |
[29] |
HOEHN E, VON GUNTEN H R. Radon in groundwater: a tool to assess infiltration from surface waters to aquifers[J]. Water Resources Research, 1989, 25(8): 1795-1803.
DOI URL |
[30] |
HOEHN E, VON GUNTEN H R, STAUFFER F, et al. Radon-222 as a groundwater tracer: a laboratory study[J]. Environmental Science and Technology, 1992, 26(4): 734-738.
DOI URL |
[31] |
BERTIN C, BOURG A C. Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing[J]. Environmental Science and Technology, 1994, 28(5): 794-798.
DOI URL |
[32] | DORN F E. Die von radioactiven Substanzen ausgesandte Emanation[J]. Abhandlungen der Naturforschenden Gesellschaft zu Halle, 1900, 23: 1-15. |
[33] | BASKARAN M. Radon: a tracer for geological, geophysical and geochemical studies[M]. Chambridge: Springer, 2016. |
[34] |
BOURDON B. Introduction to U-series geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 1-21.
DOI URL |
[35] |
PORCELLI D. The behavior of U- and Th-series nuclides in groundwater[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 317-361.
DOI URL |
[36] |
KING P T, MICHEL J, MOORE W S. Ground water geochemistry of 228Ra, 226Ra and 222Rn[J]. Geochimica et Cosmochimica Acta, 1982, 46(7): 1173-1182.
DOI URL |
[37] | BURNETT W C, SANTOS I R, WEINSTEIN Y, et al. Remaining uncertainties in the use of Rn-222 as a quantitative tracer of submarine groundwater discharge[J]. IAHS-AISH Publication, 2007(312): 109-118. |
[38] |
DIMOVA N T, BURNETT W C. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222[J]. Limnology and Oceanography, 2011, 56(2): 486-494.
DOI URL |
[39] |
LUO X, JIAO J J, WANG X S, et al. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: implication of water balance in the Badain Jaran Desert, China[J]. Journal of Hydrology, 2016, 534: 87-103.
DOI URL |
[40] |
BURNETT W C, WATTAYAKORN G, SUPCHAROEN R, et al. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia[J]. Journal of Hydrology, 2017, 549: 79-91.
DOI URL |
[41] |
SMITH C G, CABLE J E, MARTIN J B, et al. Evaluating the source and seasonality of submarine groundwater discharge using a radon-222 pore water transport model[J]. Earth and Planetary Science Letters, 2008, 273(3/4): 312-322.
DOI URL |
[42] |
BOUDREAU B P. On the equivalence of nonlocal and radial-diffusion models for pore water irrigation[J]. Journal of Marine Research, 1984, 42(3): 731-735.
DOI URL |
[43] | CHENG K H, LUO X, JIAO J J. Two-decade variations of fresh submarine groundwater discharge to Tolo Harbour and their ecological significance by coupled remote sensing and radon-222 model[J]. Water Research, 2020, 178: 115866. |
[44] |
MARTENS C S, KIPPHUT G W, KLUMP J V. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements[J]. Science, 1980, 208(4441): 285-288.
DOI URL |
[45] |
CORBETT D R, BURNETT W C, CABLE P H, et al. A multiple approach to the determination of radon fluxes from sediments[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998, 236(1/2): 247-253.
DOI URL |
[46] | 马志勇. 基于氡-222的胶州湾海底地下水排泄研究[D]. 厦门: 厦门大学, 2013. |
[47] |
LEE C M, JIAO J J, LUO X, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong[J]. Science of the Total Environment, 2012, 433: 427-433.
DOI URL |
[48] | SCHULZ H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]// CHESTER R, JICKELLS T. Marine geochemistry. Berlin: Springer, 2006: 73-124. |
[49] |
ULLMAN W J, ALLER R C. Diffusion coefficients in nearshore marine sediments[J]. Limnology and Oceanography, 1982, 27(3): 552-556.
DOI URL |
[50] |
PENG T H, TAKAHASHI T, BROECKER W S. Surface radon measurements in the North Pacific Ocean Station Papa[J]. Journal of Geophysical Research, 1974, 79(12): 1772-1780.
DOI URL |
[51] |
BOUDREAU B P. The diffusive tortuosity of fine-grained unlithified sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(16): 3139-3142.
DOI URL |
[52] | MACINTYRE S, WANNINKHOF R, CHANTON J P. Trace gas exchange across the air-water interface in freshwatre and coastalmarine environments[M]//MASATSON P A, HARRISS R C. Biogenic trace gases:measuring emissions from soil and water. Oxford: Blackwell Science Ltd, 1995: 52-77. |
[53] |
SEETON C J. Viscosity-temperature correlation for liquids[J]. Tribology Letters, 2006, 22(1): 67-78.
DOI URL |
[54] |
NAFTZ D L, MILLERO F J, JONES B F, et al. An equation of state for hypersaline water in Great Salt Lake, Utah, USA[J]. Aquatic Geochemistry, 2011, 17(6): 809-820.
DOI URL |
[55] |
HARTMAN B, HAMMOND D E. Gas exchange in San Francisco Bay[J]. Hydrobiologia, 1985, 129(1): 59-68.
DOI URL |
[56] |
BURNETT W C, DULAIOVA H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21-35.
DOI URL |
[57] |
CABLE J E, BURNETT W C, CHANTON J P, et al. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222[J]. Earth and Planetary Science Letters, 1996, 144(3/4): 591-604.
DOI URL |
[58] |
RODELLAS V, STIEGLITZ T C, TAMBORSKI J J, et al. Conceptual uncertainties in groundwater and porewater fluxes estimated by radon and radium mass balances[J]. Limnology and Oceanography, 2021, 66(4): 1237-1255.
DOI URL |
[59] | GARCIA-ORELLANA J, RODELLAS V, TAMBORSKI J, et al. Radium isotopes as submarine groundwater discharge (SGD) tracers: review and recommendations[J]. Earth-Science Reviews, 2021, 220: 103681. |
[60] | ROGERS A S. The physical behavior and geologic control of radon in mountain streams[R]. Salt Lake City: U S Geological Survey, 1956. |
[61] |
COOK P G, FAVREAU G, DIGHTON J C, et al. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers[J]. Journal of Hydrology, 2003, 277(1/2): 74-88.
DOI URL |
[62] |
COOK P G. Estimating groundwater discharge to rivers from river chemistry surveys[J]. Hydrological Processes, 2013, 27(25): 3694-3707.
DOI URL |
[63] |
LAMONTAGNE S, COOK P G. Estimation of hyporheic water residence time in-situ using 222Rn disequilibrium[J]. Limnology and Oceanography: Methods, 2007, 5(11): 407-416.
DOI URL |
[64] |
WONG W W, GRACE M R, CARTWRIGHT I, et al. Dynamics of groundwater-derived nitrate and nitrous oxide in a tidal estuary from radon mass balance modeling[J]. Limnology and Oceanography, 2013, 58(5): 1689-1706.
DOI URL |
[65] | BROECKER W S, PENG T H. Tracers in the sea[M]. Palisades: Eldigio Press, 1982. |
[66] |
LEWIS W K, WHITMAN W G. Principles of gas absorption[J]. Industrial and Engineering Chemistry, 1924, 16(12): 1215-1220.
DOI URL |
[67] |
ELLINS K K, ROMAN-MAS A, LEE R. Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico[J]. Journal of Hydrology, 1990, 115(1/2/3/4): 319-341.
DOI URL |
[68] |
ORTEGA L, MANZANO M, CUSTODIO E, et al. Using 222Rn to identify and quantify groundwater inflows to the Mundo River (SE Spain)[J]. Chemical Geology, 2015, 395: 67-79.
DOI URL |
[69] |
STELLATO L, PETRELLA E, TERRASI F, et al. Some limitations in using 222Rn to assess river-groundwater interactions: the case of Castel di Sangro alluvial plain (central Italy)[J]. Hydrogeology Journal, 2008, 16(4): 701-712.
DOI URL |
[70] |
ZHAO D, WANG G C, LIAO F, et al. Groundwater-surface water interactions derived by hydrochemical and isotopic (222Rn, deuterium, oxygen-18) tracers in the Nomhon area, Qaidam Basin, NW China[J]. Journal of Hydrology, 2018, 565: 650-661.
DOI URL |
[71] |
GENEREUX D P, HEMOND H F. Determination of gas exchange rate constants for a small stream on Walker Branch Watershed, Tennessee[J]. Water Resources Research, 1992, 28(9): 2365-2374.
DOI URL |
[72] |
MULLINGER N J, BINLEY A M, PATES J M, et al. Radon in Chalk streams: spatial and temporal variation of groundwater sources in the Pang and Lambourn catchments, UK[J]. Journal of Hydrology, 2007, 339(3/4): 172-182.
DOI URL |
[73] | ALIN S R, DE FÁTIMA F L RASERA M, SALIMON C I, et al. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G1): G01009. |
[74] |
LUO X, KUANG X X, JIAO J J, et al. Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai-Tibet Plateau: using 222Rn and stable isotopes[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5579-5598.
DOI URL |
[75] |
ROSENBERRY D O, LEWANDOWSKI J, MEINIKMANN K, et al. Groundwater-the disregarded component in lake water andnutrient budgets. Part 1: effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921.
DOI URL |
[76] |
SCHAFRAN G C, DRISCOLL C T. Flow path-composition relationships for groundwater entering an acidic lake[J]. Water Resources Research, 1993, 29(1): 145-154.
DOI URL |
[77] |
PITTROFF M, FREI S, GILFEDDER B S. Quantifying nitrate and oxygen reduction rates in the hyporheic zone using 222Rn to upscale biogeochemical turnover in rivers[J]. Water Resources Research, 2017, 53(1): 563-579.
DOI URL |
[78] |
GILFEDDER B S, CARTWRIGHT I, HOFMANN H, et al. Explicit modeling of radon-222 in Hydrogeosphere during steady state and dynamic transient storage[J]. Groundwater, 2019, 57(1): 36-47.
DOI URL |
[79] |
CARTWRIGHT I, CENDÓN D, CURRELL M, et al. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations[J]. Journal of Hydrology, 2017, 555: 797-811.
DOI URL |
[80] | CLOSE M, MATTHEWS M, BURBERY L, et al. Use of radon to characterise surface water recharge to groundwater[J]. Journal of Hydrology (New Zealand), 2014, 53(2): 113-127. |
[81] |
STELLATO L, TERRASI F, MARZAIOLI F, et al. Is 222Rn a suitable tracer of stream-groundwater interactions? A case study in central Italy[J]. Applied Geochemistry, 2013, 32: 108-117.
DOI URL |
[82] | POPP A L, PARDO-ÁLVAREZ Á, SCHILLING O S, et al. A framework for untangling transient groundwater mixing and travel times[J]. Water Resources Research, 2021, 57(4): e2020WR028362. |
[1] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||