Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 20-30.DOI: 10.13745/j.esf.sf.2023.9.8
Previous Articles Next Articles
LIANG Huizhi(), GUO Zhaohui*(
), ZHANG Yunxia, XU Rui
Received:
2023-08-18
Revised:
2023-09-01
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
LIANG Huizhi, GUO Zhaohui, ZHANG Yunxia, XU Rui. Mineralogical characteristics and release mechanism of arsenic-thallium from As-bearing tailings[J]. Earth Science Frontiers, 2024, 31(2): 20-30.
元素 | wB/% | 元素 | wB/% |
---|---|---|---|
As | 0.16 | Mn | 0.018 |
Tl | 0.000 566 | Pb | 0.005 |
Ca | 22.3 | Sr | 0.012 |
Mg | 11.2 | Al | 0.26 |
Fe | 0.21 | S | 0.038 |
Table 1 Major element composition and heavy metal content in As-bearing tailings
元素 | wB/% | 元素 | wB/% |
---|---|---|---|
As | 0.16 | Mn | 0.018 |
Tl | 0.000 566 | Pb | 0.005 |
Ca | 22.3 | Sr | 0.012 |
Mg | 11.2 | Al | 0.26 |
Fe | 0.21 | S | 0.038 |
矿物种类 | 化学式 | wB/% | 矿物种类 | 化学式 | wB/% | ||
---|---|---|---|---|---|---|---|
Dolomite | 白云石 | CaMg(CO3)2 | 82.12 | Angelellite | 砷铁矿 | Fe4(AsO4)2O3 | 0.41 |
Calcite | 方解石 | CaCO3 | 4.87 | Kaolinite | 高岭石 | Al2Si2O5(OH)4 | 0.18 |
Gedrite | 铝直闪石 | Mg5A12(Si6A12O22)(OH)2 | 0.23 | Albite | 钠长石 | Na2OAl2O36SiO2 | 0.17 |
Sperrylite | 砷铂矿 | PtAs2 | 0.23 | Ferritschermakite | 铁镁钙闪石 | Ca2Fe2MgA13Si7O22(OH)2 | 0.8 |
Orthoclase | 正长石 | KAlSi3O8 | 1.25 | Quartz | 石英 | SiO2 | 2.88 |
Iron | 铁 | Fe | 0.09 |
Table 2 Major minerals in As-bearing tailings
矿物种类 | 化学式 | wB/% | 矿物种类 | 化学式 | wB/% | ||
---|---|---|---|---|---|---|---|
Dolomite | 白云石 | CaMg(CO3)2 | 82.12 | Angelellite | 砷铁矿 | Fe4(AsO4)2O3 | 0.41 |
Calcite | 方解石 | CaCO3 | 4.87 | Kaolinite | 高岭石 | Al2Si2O5(OH)4 | 0.18 |
Gedrite | 铝直闪石 | Mg5A12(Si6A12O22)(OH)2 | 0.23 | Albite | 钠长石 | Na2OAl2O36SiO2 | 0.17 |
Sperrylite | 砷铂矿 | PtAs2 | 0.23 | Ferritschermakite | 铁镁钙闪石 | Ca2Fe2MgA13Si7O22(OH)2 | 0.8 |
Orthoclase | 正长石 | KAlSi3O8 | 1.25 | Quartz | 石英 | SiO2 | 2.88 |
Iron | 铁 | Fe | 0.09 |
元素 | 浸出环境 | 符合模型 | 参数 | ||
---|---|---|---|---|---|
a | b | R2 | |||
As | pH=3.0 | 双常数方程 | 2.754 1 | 0.242 6 | 0.997 0 |
pH=4.5 | 双常数方程 | 2.345 1 | 0.311 3 | 0.990 2 | |
pH=7.0 | 双常数方程 | 2.418 9 | 0.297 4 | 0.993 4 | |
pH=9.0 | 双常数方程 | 2.445 6 | 0.294 8 | 0.993 2 | |
Fe3+浓度:200×10-6 mg·L-1 | Elovich方程 | 2.513 2 | 2.474 5 | 0.971 9 | |
Fe3+浓度:400×10-6 mg·L-1 | 抛物线扩散方程 | 0.704 3 | 0.143 7 | 0.869 3 | |
Fe3+浓度:600×10-6 mg·L-1 | 双常数方程 | -2.603 5 | 0.389 5 | 0.917 4 | |
粒径>0.850 mm | 抛物线扩散方程 | 9.165 5 | 3.006 2 | 0.968 7 | |
粒径0.250~0.850 mm | 抛物线扩散方程 | 8.773 3 | 3.014 7 | 0.987 9 | |
粒径0.150~<0.250 mm | 抛物线扩散方程 | 9.767 2 | 2.618 0 | 0.991 8 | |
粒径<0.150 mm | 双常数方程 | 2.754 1 | 0.242 6 | 0.997 0 | |
Tl | pH=3.0 | 抛物线扩散方程 | 2.762 1 | -0.033 8 | 0.432 0 |
pH=4.5 | 二级动力学方程 | 0.158 7 | 0.467 2 | 0.138 0 | |
pH=7.0 | 抛物线扩散方程 | 2.017 9 | 0.021 8 | 0.302 9 | |
pH=9.0 | 抛物线扩散方程 | 2.757 3 | 0.014 9 | 0.383 2 | |
Fe3+浓度:200×10-6 mg·L-1 | Elovich方程 | 5.638 9 | -0.475 4 | 0.794 6 | |
Fe3+浓度:400×10-6 mg·L-1 | Elovich方程 | 8.459 9 | -0.793 9 | 0.867 4 | |
Fe3+浓度:600×10-6 mg·L-1 | Elovich方程 | 10.889 2 | -1.072 1 | 0.859 0 | |
粒径>0.850 mm | 抛物线扩散方程 | 1.864 7 | -0.040 6 | 0.678 3 | |
粒径0.250~0.850 mm | 抛物线扩散方程 | 2.262 3 | -0.056 3 | 0.692 2 | |
粒径0.150~<0.250 mm | 双常数方程 | 0.922 6 | -0.078 9 | 0.537 4 | |
粒径<0.150 mm | 抛物线扩散方程 | 2.762 0 | -0.033 8 | 0.432 0 |
Table 3 Results of linear fitting of kinetic equation of leaching of As-bearing tailings
元素 | 浸出环境 | 符合模型 | 参数 | ||
---|---|---|---|---|---|
a | b | R2 | |||
As | pH=3.0 | 双常数方程 | 2.754 1 | 0.242 6 | 0.997 0 |
pH=4.5 | 双常数方程 | 2.345 1 | 0.311 3 | 0.990 2 | |
pH=7.0 | 双常数方程 | 2.418 9 | 0.297 4 | 0.993 4 | |
pH=9.0 | 双常数方程 | 2.445 6 | 0.294 8 | 0.993 2 | |
Fe3+浓度:200×10-6 mg·L-1 | Elovich方程 | 2.513 2 | 2.474 5 | 0.971 9 | |
Fe3+浓度:400×10-6 mg·L-1 | 抛物线扩散方程 | 0.704 3 | 0.143 7 | 0.869 3 | |
Fe3+浓度:600×10-6 mg·L-1 | 双常数方程 | -2.603 5 | 0.389 5 | 0.917 4 | |
粒径>0.850 mm | 抛物线扩散方程 | 9.165 5 | 3.006 2 | 0.968 7 | |
粒径0.250~0.850 mm | 抛物线扩散方程 | 8.773 3 | 3.014 7 | 0.987 9 | |
粒径0.150~<0.250 mm | 抛物线扩散方程 | 9.767 2 | 2.618 0 | 0.991 8 | |
粒径<0.150 mm | 双常数方程 | 2.754 1 | 0.242 6 | 0.997 0 | |
Tl | pH=3.0 | 抛物线扩散方程 | 2.762 1 | -0.033 8 | 0.432 0 |
pH=4.5 | 二级动力学方程 | 0.158 7 | 0.467 2 | 0.138 0 | |
pH=7.0 | 抛物线扩散方程 | 2.017 9 | 0.021 8 | 0.302 9 | |
pH=9.0 | 抛物线扩散方程 | 2.757 3 | 0.014 9 | 0.383 2 | |
Fe3+浓度:200×10-6 mg·L-1 | Elovich方程 | 5.638 9 | -0.475 4 | 0.794 6 | |
Fe3+浓度:400×10-6 mg·L-1 | Elovich方程 | 8.459 9 | -0.793 9 | 0.867 4 | |
Fe3+浓度:600×10-6 mg·L-1 | Elovich方程 | 10.889 2 | -1.072 1 | 0.859 0 | |
粒径>0.850 mm | 抛物线扩散方程 | 1.864 7 | -0.040 6 | 0.678 3 | |
粒径0.250~0.850 mm | 抛物线扩散方程 | 2.262 3 | -0.056 3 | 0.692 2 | |
粒径0.150~<0.250 mm | 双常数方程 | 0.922 6 | -0.078 9 | 0.537 4 | |
粒径<0.150 mm | 抛物线扩散方程 | 2.762 0 | -0.033 8 | 0.432 0 |
Fig.7 Occurrences of As (a) and Tl (b) before and after leaching of tailings under different conditions. (F1: exchangeable fraction; F2: carbonate-bound fraction; F3: Fe-Mn oxide-bound fraction; F4: organic-bound fraction; F5: residual fraction)
[1] | QIU J P, ZHAO Y L, LONG H, et al. Low-carbon binder for cemented paste backfill: flowability, strength and leaching characteristics[J]. Minerals, 2019, 9(11): 707. |
[2] | ROUSSEL C, BRIL H, FERNANDEZ A. Arsenic speciation: involvement in evaluation of environmental impact caused by mine wastes[J]. Journal of Environmental Quality, 2000, 29(1): 182-188. |
[3] | ASSAWINCHAROENKIJ T, HAUZENBERGER C, SUTTHIRAT C. Mineralogy and geochemistry of tailings from a gold mine in northeastern Thailand[J]. Human and Ecological Risk Assessment: An International Journal, 2017, 23(2): 364-387. |
[4] | WU Y, ZHOU X Y, LEI M, et al. Migration and transformation of arsenic: contamination control and remediation in realgar mining areas[J]. Applied Geochemistry, 2017, 77: 44-51. |
[5] | 马玉玲, 马杰, 陈雅丽, 等. 水铁矿及其胶体对砷的吸附与吸附形态[J]. 环境科学, 2018, 39(1):179-186. |
[6] | LIU J, WANG J, TSANG D C W, et al. Emerging thallium pollution in China and source tracing by thallium isotopes[J]. Environmental Science and Technology, 2018, 52(21): 11977-11979. |
[7] | LI D X, GAO Z M, ZHU Y X, et al. Photochemical reaction of Tl in aqueous solution and its environmental significance[J]. Geochemical Journal, 2005, 39(2): 113-119. |
[8] | XIAO T F, GUHA J, BOYLE D, et al. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in Southwest Guizhou, China[J]. Science of the Total Environment, 2004, 318(1/2/3): 223-244. |
[9] | CHEN W, HUANGFU X, XIONG J, et al. Retention of thallium(I) on goethite, hematite, and manganite: quantitative insights and mechanistic study[J]. Water Research, 2022, 221: 118836. |
[10] | WEN J C, WU Y G, LU Q, et al. Releasing characteristics and biological toxicity of the heavy metals from waste of mercury-thalliummine in Southwest Guizhou of China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1111-1120. |
[11] | RAN H, GUO Z, YI L, et al. Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China[J]. Journal of Hazardous Materials, 2021, 413:125382. |
[12] | SUN R G, GAO Y, YANG Y. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil[J]. Chemosphere, 2022, 291: 132792. |
[13] | WANG P, SUN Z H, HU yuanan, et al. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact[J]. Science of the Total Environment, 2019, 695: 133893. |
[14] | 陈志良, 赵述华, 钟松雄, 等. 添加稳定剂对尾矿土中砷形态及转换机制的影响[J]. 环境科学, 2016, 37(6): 2345-2352. |
[15] | AKHAVAN A, GOLCHIN A. Estimation of arsenic leaching from Zn-Pb Mine tailings under environmental conditions[J]. Journal of Cleaner Production, 2021, 295: 126477. |
[16] | YANG F, XIE S W, WEI C Y, et al. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China[J]. Science of the Total Environment, 2018, 626: 77-86. |
[17] | WANG X, ZHANG H, WANG L L, et al. Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment[J]. Science of the Total Environment, 2019, 668: 32-39. |
[18] | LARIOS R, FERNÁNDEZ-MARTÍNEZ R, SILVA V, et al. Chemical availability of arsenic and heavy metals in sediments from abandoned cinnabar mine tailings[J]. Environmental Earth Sciences, 2013, 68(2): 535-546. |
[19] | ZHAO Z Z, ZHANG H, WANG X, et al. The mechanism of microwave-induced mineral transformation and stabilization of arsenic in realgar tailings using ferrous sulfate[J]. Chemical Engineering Journal, 2020, 393: 124732. |
[20] | NIEVA N E, BORGNINO L, LOCATI F, et al. Mineralogical control on arsenic release during sediment-water interaction in abandoned mine wastes from the Argentina Puna[J]. Science of the Total Environment, 2016, 550: 1141-1151. |
[21] | 贺文霄, 刘雪敏. 表生环境铊污染现状及国内外治理技术进展[J]. 复旦学报(自然科学版), 2023, 62(2):248-262. |
[22] | 邱国良, 陈泓霖. 衡阳市湘江流域地表水铊预警监测体系探讨[J]. 供水技术, 2023, 17(3): 20-22. |
[23] | EIGHMY T T, EUSDEN J D, KRZANOWSKI J E, et al. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash[J]. Environmental Science and Technology, 1995, 29(3): 629-646. |
[24] | SAIKIA N, BORAH R R, KONWAR K, et al. pH dependent leachings of some trace metals and metalloid species from lead smelter slag and their fate in natural geochemical environment[J]. Groundwater for Sustainable Development, 2018, 7: 348-358. |
[25] | COSTIS S, COUDERT L, MUELLER K, et al. Behaviour of flotation tailings from a rare earth element deposit at high salinity[J]. Journal of Environmental Management, 2021, 300: 113773. |
[26] | XU D M, FU R, TONG Y, et al. The potential environmental risk implications of heavy metals based on their geochemical and mineralogical characteristics in the size-segregated zinc smelting slags[J]. Journal of Cleaner Production, 2021, 315: 128199. |
[27] | VOEGELIN A, PFENNINGER N, PETRIKIS J, et al. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock[J]. Environmental Science and Technology, 2015, 49(9): 5390-5398. |
[28] | WEN Q Q, YANG X, YAN X L, et al. Evaluation of arsenic mineralogy and geochemistry in gold mine-impacted matrices: speciation, transformation, and potential associated risks[J]. Journal of Environmental Management, 2022, 308: 114619. |
[29] | KIM J Y, DAVIS A P, KIM K W. Stabilization of available arsenic in highly contaminated mine tailings using iron[J]. Environmental Science and Technology, 2003, 37(1): 189-195. |
[30] | DRAHOTA P, KULAKOWSKI O, CULKA A, et al. Arsenic mineralogy of near-neutral soils and mining waste at the Smolotely-Líšnice historical gold district, Czech Republic[J]. Applied Geochemistry, 2018, 89: 243-254. |
[31] | 李惠全, 胡麓华, 樊娟, 等. “十二五” 期间湖南省酸雨污染现状及成因分析研究[J]. 环境科学与管理, 2015, 40(11):57-60. |
[32] | RIEUWERTS J S, MIGHANETARA K, BRAUNGARDT C B, et al. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK[J]. Science of the Total Environment, 2014, 472: 226-234. |
[33] | TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. |
[34] | MALMSTRÖM M E, GLEISNER M, HERBERT R B. Element discharge from pyritic mine tailings at limited oxygen availability in column experiments[J]. Applied Geochemistry, 2006, 21(1): 184-202. |
[35] | 吴攀, 刘丛强, 杨元根, 等. 矿山环境中(重)金属的释放迁移地球化学及其环境效应[J]. 矿物学报, 2001, 21(2):213-218. |
[36] | BERGER A C, BETHKE C M, KRUMHANSL J L. A process model of natural attenuation in drainage from a historic mining district[J]. Applied Geochemistry, 2000, 15(5): 655-666. |
[37] | DONAHUE R, HENDRY M J. Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada[J]. Applied Geochemistry, 2003, 18(11): 1733-1750. |
[38] | 王云燕, 徐慧, 唐巾尧, 等. 硫化砷渣的环境稳定性与金属释放风险研究[J]. 中南大学学报(自然科学版), 2023, 54(2):548-561. |
[39] | SAIKIA N, KATO S, KOJIMA T. Behavior of B, Cr, Se, As, Pb, Cd, and Mo present in waste leachates generated from combustion residues during the formation of ettringite[J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1710-1719. |
[40] | TURNER A, CABON A, GLEGG G A, et al. Sediment-water interactions of thallium under simulated estuarine conditions[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6779-6787. |
[41] | VAXEVANIDOU K, CHRISTOU C, KREMMYDAS G, et al. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample[J]. Bulletin of Environmental Contamination and Toxicology, 2015, 94(3): 282-288. |
[42] | KE W, ZENG J, ZHU F, et al. Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting[J]. Environmental Pollution, 2022, 307: 119486. |
[43] | XIE Y Y, LU G N, YANG C F, et al. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage[J]. PLoS One, 2018, 13(1): e0190010. |
[44] | DONG Y B, CHEN D N, LIN H. The behavior of heavy metal release from sulfide waste rock under microbial action and different environmental factors[J]. Environmental Science and Pollution Research, 2022, 29(50): 75293-75306. |
[45] | ZHU W X, XIA J, YANG Y, et al. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite[J]. Bioresource Technology, 2011, 102(4): 3877-3882. |
[46] | MCKIBBEN M A. Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures[J]. Geochimica et Cosmochimica Acta, 1986, 50(7): 1509-1520. |
[47] | RIMSTIDT J D, NEWCOMB W D. Measurement and analysis of rate data: the rate of reaction of ferric iron with pyrite[J]. Geochimica et Cosmochimica Acta, 1993, 57(9): 1919-1934. |
[48] | NICHOLSON R V, GILLHAM R W, REARDON E J. Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics[J]. Geochimica et Cosmochimica Acta, 1988, 52(5): 1077-1085. |
[49] | JOHNSON R H, BLOWES D W, ROBERTSON W D, et al. The hydrogeochemistry of the nickel rim mine tailings impoundment, Sudbury, Ontario[J]. Journal of Contaminant Hydrology, 2000, 41(1/2): 49-80. |
[50] | JOHNSON D B, HALLBERG K B. Acid mine drainage remediation options: a review[J]. Science of the Total Environment, 2005, 338(1/2): 3-14. |
[51] | 袁婧, 吴骥子, 连斌, 等. 氧化石墨烯负载铁锰复合材料对镉砷污染土壤的钝化修复[J]. 环境科学, 2024, 45(2): 1107-1117. |
[52] | SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. |
[53] | AGUILAR-CARRILL J, HERRERA L, GUTIERREZ E J, et al. Solid-phase distribution and mobility of thallium in mining-metallurgical residues: environmental hazard implications[J]. Environmental Pollution, 2018, 243: 1833-1845. |
[54] | BUTLER B A. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments[J]. Water Research, 2009, 43(5): 1392-1402. |
[55] | CHEN T, YAN Z A, XU D M, et al. Current situation and forecast of environmental risks of a typical lead-zinc sulfide tailings impoundment based on its geochemical characteristics[J]. Journal of Environmental Sciences, 2020, 93: 120-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||