Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 438-463.DOI: 10.13745/j.esf.sf.2022.1.19
Previous Articles Next Articles
LI Xiaowei1,2(), SHAN Wei2, YU Xuefeng2, LI Dapeng2, XIE Yuanhui1, ZHANG Guokun1, CHI Naijie2, WANG Wenlu1, ZHANG Yan1,2, LI Zengsheng2, MA Xiangxian2
Received:
2021-05-06
Revised:
2021-10-22
Online:
2022-09-25
Published:
2022-08-24
CLC Number:
LI Xiaowei, SHAN Wei, YU Xuefeng, LI Dapeng, XIE Yuanhui, ZHANG Guokun, CHI Naijie, WANG Wenlu, ZHANG Yan, LI Zengsheng, MA Xiangxian. Petrogenesis of Early Cretaceous Qibaoshan alkaline intrusive rocks in the Wulian area and its geological significance[J]. Earth Science Frontiers, 2022, 29(5): 438-463.
Fig.2 Hand specimens, photomicrographs and BSE photos of Qibaoshan alkaline rocks. (a)&(b) Hand specimens photos for medium-fine grained monzogabbro and moderate-fine grained pyroxene monzonite; (c) Photomicrographs of clinopyroxenes and biotites from medium-fine grained monzogabbro; (d) Photomicrographs of Cpx and Pl from porphyritic pyroxene monzonite; (e) Intergrowth textures of magnetite and ilmenite from medium-fine grained monzogabbro; (f) Large grain plagioclase without obvious zoning from porphyritic pyroxene monzonite; (g) Epidotization of plagioclase in porphyritic pyroxene monzonite; (h) plagioclase surrounded by K-feldspar rims in medium-fine grained monzonite gabbro; and (i) Cpx from medium-fine grained monzogabbro shows spongy textures, of whose sieves are mainly composed to magnetite, ilmenite and apatite. Cpx: clinopyroxene; Pl: plagioclase; Mt: magnetite; Ilm: ilmenite; Ep: epidote; Bt: biotite; Ap: apatite; Kf: K-feldspar.
样品号 | 岩性 | wB/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Total | ||
LD1901-1 | Kf-中细粒二 长辉长岩 | 64.09 | 0.10 | 19.57 | 0.18 | 0.00 | 0.00 | 0.70 | 3.00 | 11.64 | 0.03 | 99.3 |
LD1901-2 | 63.89 | 0.07 | 19.45 | 0.17 | 0.02 | 0.00 | 0.70 | 2.99 | 11.61 | 0.00 | 98.9 | |
LD1901-3 | 63.99 | 0.07 | 19.61 | 0.18 | 0.04 | 0.00 | 0.98 | 3.72 | 10.35 | 0.00 | 98.9 | |
LD1901-4 | 64.68 | 0.05 | 19.39 | 0.29 | 0.02 | 0.00 | 0.50 | 3.64 | 10.90 | 0.01 | 99.5 | |
LD1901-5 | 64.18 | 0.01 | 18.75 | 0.12 | 0.00 | 0.00 | 0.01 | 0.24 | 15.35 | 0.00 | 98.7 | |
LD1901-6 | 63.84 | 0.03 | 19.19 | 0.36 | 0.01 | 0.00 | 0.44 | 2.71 | 12.11 | 0.01 | 98.7 | |
LD1901-7 | 64.29 | 0.07 | 19.43 | 0.22 | 0.02 | 0.00 | 0.58 | 2.62 | 11.76 | 0.00 | 99.0 | |
LD1901-8 | 64.28 | 0.10 | 19.44 | 0.16 | 0.00 | 0.01 | 0.61 | 3.56 | 10.75 | 0.00 | 98.9 | |
LD1901-9 | Kf-斑状辉石 二长岩 | 65.06 | 0.02 | 19.62 | 0.17 | 0.00 | 0.03 | 0.05 | 0.61 | 14.62 | 0.00 | 100.2 |
QBS1906-1 | 64.36 | 0.08 | 19.19 | 0.48 | 0.00 | 0.00 | 0.24 | 0.70 | 14.11 | 0.03 | 99.2 | |
QBS1906-2 | 63.84 | 0.02 | 18.85 | 0.28 | 0.00 | 0.13 | 0.06 | 0.45 | 14.92 | 0.00 | 98.5 | |
QBS1906-3 | 64.23 | 0.00 | 18.99 | 0.36 | 0.05 | 0.03 | 0.04 | 0.48 | 14.86 | 0.00 | 99.0 | |
HSG1904-1 | 63.68 | 0.07 | 19.68 | 0.17 | 0.00 | 0.00 | 0.75 | 4.08 | 10.33 | 0.00 | 98.8 | |
QBS1909-1 | 66.35 | 0.36 | 17.98 | 0.53 | 0.11 | 0.16 | 0.36 | 3.14 | 10.53 | 0.02 | 99.5 | |
QBS1909-2 | 64.59 | 0.05 | 18.62 | 0.00 | 0.05 | 0.00 | 0.01 | 2.06 | 13.11 | 0.00 | 98.5 | |
QBS1909-3 | 64.80 | 0.03 | 18.90 | 0.01 | 0.02 | 0.00 | 0.00 | 0.25 | 15.65 | 0.00 | 99.7 | |
QBS1909-4 | 65.2 | 0.00 | 18.7 | 0.01 | 0.00 | 0.01 | 0.0 | 2.20 | 13.17 | 0.08 | 100.1 |
Table 3 Major elements contents of K-feldspars from Qibaoshan complex
样品号 | 岩性 | wB/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Total | ||
LD1901-1 | Kf-中细粒二 长辉长岩 | 64.09 | 0.10 | 19.57 | 0.18 | 0.00 | 0.00 | 0.70 | 3.00 | 11.64 | 0.03 | 99.3 |
LD1901-2 | 63.89 | 0.07 | 19.45 | 0.17 | 0.02 | 0.00 | 0.70 | 2.99 | 11.61 | 0.00 | 98.9 | |
LD1901-3 | 63.99 | 0.07 | 19.61 | 0.18 | 0.04 | 0.00 | 0.98 | 3.72 | 10.35 | 0.00 | 98.9 | |
LD1901-4 | 64.68 | 0.05 | 19.39 | 0.29 | 0.02 | 0.00 | 0.50 | 3.64 | 10.90 | 0.01 | 99.5 | |
LD1901-5 | 64.18 | 0.01 | 18.75 | 0.12 | 0.00 | 0.00 | 0.01 | 0.24 | 15.35 | 0.00 | 98.7 | |
LD1901-6 | 63.84 | 0.03 | 19.19 | 0.36 | 0.01 | 0.00 | 0.44 | 2.71 | 12.11 | 0.01 | 98.7 | |
LD1901-7 | 64.29 | 0.07 | 19.43 | 0.22 | 0.02 | 0.00 | 0.58 | 2.62 | 11.76 | 0.00 | 99.0 | |
LD1901-8 | 64.28 | 0.10 | 19.44 | 0.16 | 0.00 | 0.01 | 0.61 | 3.56 | 10.75 | 0.00 | 98.9 | |
LD1901-9 | Kf-斑状辉石 二长岩 | 65.06 | 0.02 | 19.62 | 0.17 | 0.00 | 0.03 | 0.05 | 0.61 | 14.62 | 0.00 | 100.2 |
QBS1906-1 | 64.36 | 0.08 | 19.19 | 0.48 | 0.00 | 0.00 | 0.24 | 0.70 | 14.11 | 0.03 | 99.2 | |
QBS1906-2 | 63.84 | 0.02 | 18.85 | 0.28 | 0.00 | 0.13 | 0.06 | 0.45 | 14.92 | 0.00 | 98.5 | |
QBS1906-3 | 64.23 | 0.00 | 18.99 | 0.36 | 0.05 | 0.03 | 0.04 | 0.48 | 14.86 | 0.00 | 99.0 | |
HSG1904-1 | 63.68 | 0.07 | 19.68 | 0.17 | 0.00 | 0.00 | 0.75 | 4.08 | 10.33 | 0.00 | 98.8 | |
QBS1909-1 | 66.35 | 0.36 | 17.98 | 0.53 | 0.11 | 0.16 | 0.36 | 3.14 | 10.53 | 0.02 | 99.5 | |
QBS1909-2 | 64.59 | 0.05 | 18.62 | 0.00 | 0.05 | 0.00 | 0.01 | 2.06 | 13.11 | 0.00 | 98.5 | |
QBS1909-3 | 64.80 | 0.03 | 18.90 | 0.01 | 0.02 | 0.00 | 0.00 | 0.25 | 15.65 | 0.00 | 99.7 | |
QBS1909-4 | 65.2 | 0.00 | 18.7 | 0.01 | 0.00 | 0.01 | 0.0 | 2.20 | 13.17 | 0.08 | 100.1 |
样品号 | 岩性 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | NiO | F | Cl | Total | |||
LD1901-1 | Bt-中细粒二 长辉长岩 | 38.47 | 6.50 | 13.68 | 0.02 | 8.93 | 0.07 | 18.32 | 0.04 | 0.30 | 9.80 | 0.00 | 0.01 | 1.09 | 0.22 | 96.94 | |
LD1901-2 | 37.29 | 6.46 | 13.70 | 0.02 | 9.06 | 0.12 | 17.53 | 0.00 | 0.29 | 9.32 | 0.00 | 0.00 | 1.54 | 0.22 | 94.84 | ||
LD1901-3 | 37.95 | 6.62 | 13.85 | 0.00 | 8.71 | 0.10 | 17.77 | 0.00 | 0.29 | 9.56 | 0.03 | 0.00 | 1.01 | 0.13 | 95.57 | ||
LD1901-4 | 38.69 | 6.22 | 13.54 | 0.03 | 8.84 | 0.06 | 18.30 | 0.02 | 0.27 | 9.37 | 0.08 | 0.00 | 1.54 | 0.23 | 96.47 | ||
LD1901-5 | 38.28 | 6.54 | 13.88 | 0.06 | 8.98 | 0.11 | 17.71 | 0.02 | 0.32 | 9.41 | 0.01 | 0.00 | 2.56 | 0.16 | 96.91 | ||
LD1901-6 | 37.91 | 8.46 | 13.49 | 0.03 | 9.60 | 0.08 | 16.86 | 0.02 | 0.31 | 9.48 | 0.00 | 0.08 | 0.76 | 0.14 | 96.86 | ||
LD1901-7 | 38.31 | 6.77 | 13.95 | 0.00 | 8.97 | 0.07 | 18.14 | 0.00 | 0.31 | 9.47 | 0.01 | 0.10 | 1.50 | 0.17 | 97.09 | ||
LD1901-8 | 39.38 | 6.93 | 12.26 | 0.01 | 6.54 | 0.09 | 19.44 | 0.03 | 0.16 | 9.61 | 0.01 | 0.04 | 0.68 | 0.05 | 94.92 | ||
LD1901-9 | 38.61 | 8.76 | 13.07 | 0.00 | 7.51 | 0.09 | 17.83 | 0.03 | 0.29 | 9.39 | 0.00 | 0.04 | 0.57 | 0.03 | 95.96 | ||
LD1901-10 | 38.09 | 6.05 | 13.73 | 0.05 | 9.49 | 0.02 | 17.74 | 0.00 | 0.30 | 9.47 | 0.00 | 0.07 | 1.64 | 0.20 | 96.12 | ||
LD1901-11 | 38.26 | 6.09 | 13.32 | 0.01 | 8.74 | 0.08 | 18.50 | 0.00 | 0.26 | 9.38 | 0.00 | 0.06 | 1.07 | 0.21 | 95.49 | ||
LD1901-12 | 38.63 | 6.00 | 13.95 | 0.04 | 9.32 | 0.08 | 17.84 | 0.00 | 0.34 | 9.47 | 0.00 | 0.02 | 1.80 | 0.21 | 96.89 | ||
LD1901-13 | 38.10 | 6.05 | 13.75 | 0.03 | 9.45 | 0.15 | 17.80 | 0.02 | 0.34 | 9.55 | 0.03 | 0.03 | 1.69 | 0.16 | 96.39 | ||
HSG1904-1 | Bt-中细粒 辉石二长岩 | 38.10 | 6.73 | 13.51 | 0.02 | 10.69 | 0.09 | 16.97 | 0.08 | 0.28 | 9.26 | 0.00 | 0.00 | 1.04 | 0.26 | 96.54 | |
HSG1904-2 | 37.53 | 7.48 | 13.34 | 0.00 | 11.04 | 0.08 | 16.27 | 0.07 | 0.26 | 9.18 | 0.07 | 0.00 | 0.88 | 0.26 | 96.01 |
Table 4 Major elements contents of biotite from Qibaoshan complex
样品号 | 岩性 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Cr2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | NiO | F | Cl | Total | |||
LD1901-1 | Bt-中细粒二 长辉长岩 | 38.47 | 6.50 | 13.68 | 0.02 | 8.93 | 0.07 | 18.32 | 0.04 | 0.30 | 9.80 | 0.00 | 0.01 | 1.09 | 0.22 | 96.94 | |
LD1901-2 | 37.29 | 6.46 | 13.70 | 0.02 | 9.06 | 0.12 | 17.53 | 0.00 | 0.29 | 9.32 | 0.00 | 0.00 | 1.54 | 0.22 | 94.84 | ||
LD1901-3 | 37.95 | 6.62 | 13.85 | 0.00 | 8.71 | 0.10 | 17.77 | 0.00 | 0.29 | 9.56 | 0.03 | 0.00 | 1.01 | 0.13 | 95.57 | ||
LD1901-4 | 38.69 | 6.22 | 13.54 | 0.03 | 8.84 | 0.06 | 18.30 | 0.02 | 0.27 | 9.37 | 0.08 | 0.00 | 1.54 | 0.23 | 96.47 | ||
LD1901-5 | 38.28 | 6.54 | 13.88 | 0.06 | 8.98 | 0.11 | 17.71 | 0.02 | 0.32 | 9.41 | 0.01 | 0.00 | 2.56 | 0.16 | 96.91 | ||
LD1901-6 | 37.91 | 8.46 | 13.49 | 0.03 | 9.60 | 0.08 | 16.86 | 0.02 | 0.31 | 9.48 | 0.00 | 0.08 | 0.76 | 0.14 | 96.86 | ||
LD1901-7 | 38.31 | 6.77 | 13.95 | 0.00 | 8.97 | 0.07 | 18.14 | 0.00 | 0.31 | 9.47 | 0.01 | 0.10 | 1.50 | 0.17 | 97.09 | ||
LD1901-8 | 39.38 | 6.93 | 12.26 | 0.01 | 6.54 | 0.09 | 19.44 | 0.03 | 0.16 | 9.61 | 0.01 | 0.04 | 0.68 | 0.05 | 94.92 | ||
LD1901-9 | 38.61 | 8.76 | 13.07 | 0.00 | 7.51 | 0.09 | 17.83 | 0.03 | 0.29 | 9.39 | 0.00 | 0.04 | 0.57 | 0.03 | 95.96 | ||
LD1901-10 | 38.09 | 6.05 | 13.73 | 0.05 | 9.49 | 0.02 | 17.74 | 0.00 | 0.30 | 9.47 | 0.00 | 0.07 | 1.64 | 0.20 | 96.12 | ||
LD1901-11 | 38.26 | 6.09 | 13.32 | 0.01 | 8.74 | 0.08 | 18.50 | 0.00 | 0.26 | 9.38 | 0.00 | 0.06 | 1.07 | 0.21 | 95.49 | ||
LD1901-12 | 38.63 | 6.00 | 13.95 | 0.04 | 9.32 | 0.08 | 17.84 | 0.00 | 0.34 | 9.47 | 0.00 | 0.02 | 1.80 | 0.21 | 96.89 | ||
LD1901-13 | 38.10 | 6.05 | 13.75 | 0.03 | 9.45 | 0.15 | 17.80 | 0.02 | 0.34 | 9.55 | 0.03 | 0.03 | 1.69 | 0.16 | 96.39 | ||
HSG1904-1 | Bt-中细粒 辉石二长岩 | 38.10 | 6.73 | 13.51 | 0.02 | 10.69 | 0.09 | 16.97 | 0.08 | 0.28 | 9.26 | 0.00 | 0.00 | 1.04 | 0.26 | 96.54 | |
HSG1904-2 | 37.53 | 7.48 | 13.34 | 0.00 | 11.04 | 0.08 | 16.27 | 0.07 | 0.26 | 9.18 | 0.07 | 0.00 | 0.88 | 0.26 | 96.01 |
Fig.3 Classification diagram of clinopyroxenes (a) and equilibrium tests between Cpx and their host rocks (b) of the Qibaoshan pluton. Base map of (a) adapted from [31] and (b) adapted from [34].
Fig.5 Classification diagrams of mica (a) and discrimination of biotites with different origins (b) of the Qibaoshan complex. Base map of (a) adapted from [35] and (b) adapted from [36].
Fig.6 TAS diagram of the Qibaoshan complex (a) and plot of K2O versus SiO2 contents (b) of the Qibaoshan pluton. Base map of (a) adapted from [37] and (b) adapted from [38]; data of previous studies adapted from [20-21].
Fig.7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized multiple elements abundances (b) of whole rocks. The chondrite and primitive mantle values are from [39]. Data for previous studies are from [15,19⇓-21].
Fig.11 Harker diagrams for the Qibaoshan complex. Data for partial melting of lherzolite and phlogopite-bearing harzburgite under 1 GPa are from [3]. Previous data are from [20-21].
Fig.12 The diagrams of Sr contents versus Eu/Eu* ratios (a) and Th/Nd ratios versus Th contents (b) for the Qibaoshan alkaline rocks. Previous data sources are as Fig.7.
Fig.13 The diagrams of Zr contents versus Ba/Rb ratios (a) and Rb/Sr versus Ba/Rb ratios (b) for the Qibaoshan alkaline rocks. Data of SCLM are collected from [60]. Previous data sources are as Fig.7.
Fig.14 Plot of whole-rock Pb/Ce ratios versus Pb contents (a) and Plot of whole-rock U/Th ratios versus Th contents (b) for the Qibaoshan alkaline rocks. Base maps of (a) adapted from [62-63] and (b) adapted from [64]. Previous data sources are as Fig.7.
Fig.15 Plot of whole-rock Nb/Ta versus Zr/Hf ratios for the Qibaoshan alkaline rocks. Previous data are from [15,19-20]. Data of MORBs adapted from [71⇓-73]. Primitive mantle values are from [39].
[1] |
ZANETTI A, MAZZUCCHELLI M, RIVALENTI G, et al. The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism[J]. Contributions to Mineralogy and Petrology, 1999, 134(2/3): 107-122.
DOI URL |
[2] |
CONCEIÇÃO R V, GREEN D H. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite+pargasite lherzolite[J]. Lithos, 2004, 72(3/4): 209-229.
DOI URL |
[3] |
CONDAMINE P, MÉDARD E. Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism[J]. Earth and Planetary Science Letters, 2014, 397: 80-92.
DOI URL |
[4] |
CONDAMINE P, MÉDARD E, DEVIDAL J L. Experimental melting of phlogopite-peridotite in the garnet stability field[J]. Contributions to Mineralogy and Petrology, 2016, 171(11): 1-26.
DOI URL |
[5] |
AGRINIER P, MÉVEL C, BOSCH D, et al. Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea)[J]. Earth and Planetary Science Letters, 1993, 120(3/4): 187-205.
DOI URL |
[6] |
AOKI K I. Origin of phlogopite and potassic richterite bearing peridotite xenoliths from South Africa[J]. Contributions to Mineralogy and Petrology, 1975, 53(3): 145-156.
DOI URL |
[7] |
LI X W, MO X X, YU X H, et al. Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu area, West Qinling, China: products of subduction or syn-collision?[J]. Lithos, 2013, 172/173: 158-174.
DOI URL |
[8] |
KUANG G X, XU C, SHI A G, et al. Mineralogical and geochemical constraints on origin of Paleoproterozoic clinopyroxene syenite in Trans-North China Orogen[J]. Precambrian Research, 2020, 337: 105557.
DOI URL |
[9] |
MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
DOI URL |
[10] |
MÜNTENER O, EWING T, BAUMGARTNER L P, et al. Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks[J]. Contributions to Mineralogy and Petrology, 2018, 173(5): 38.
DOI URL |
[11] | CUI X, ZHU W B, JOURDAN F. Subduction-related subcontinental lithospheric mantle metasomatism and crustal thickening: origin for superchondritic Nb/Ta in mafic dykes[J]. Journal of the Geological Society, 2020, 178(1) : jgs2020-120. |
[12] |
CHEN W, XIONG X L, WANG J T, et al. TiO2 solubility and Nb and Ta partitioning in rutile-silica-rich supercritical fluid systems: implications for subduction zone processes[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 4765-4782.
DOI URL |
[13] |
GUO F, FAN W M, WANG Y J, et al. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt[J]. Lithos, 2004, 78(3): 291-305.
DOI URL |
[14] |
DJEDDI A, PARAT F, BODINIER J L, et al. The syenite-carbonatite complex of Ihouhaouene (western Hoggar, Algeria): interplay between alkaline magma differentiation and hybridization of cumulus crystal mushes[J]. Frontiers in Earth Science, 2021, 8: 605116.
DOI URL |
[15] |
LIU S, HU R Z, GAO S, et al. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, eastern China: constraints on petrogenesis and implications[J]. Journal of Asian Earth Sciences, 2009, 35(5): 445-458.
DOI URL |
[16] |
XIONG X L, ADAM J, GREEN T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology, 2005, 218(3/4): 339-359.
DOI URL |
[17] |
HOFFMANN J E, MÜNKER C, NAERAA T, et al. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4157-4178.
DOI URL |
[18] |
SMITHIES R H, LU Y J, JOHNSON T E, et al. No evidence for high-pressure melting of Earth's crust in the Archean[J]. Nature Communications, 2019, 10: 5559.
DOI URL |
[19] | 牛漫兰, 吴齐, 朱光, 等. 七宝山早白垩世火山岩地球化学特征及其构造意义[J]. 地质科学, 2011, 46(3): 653-678. |
[20] | 于光源. 山东五莲七宝山矿田金-铜多金属成矿作用及成矿预测[D]. 长春: 吉林大学, 2020. |
[21] | 邱检生, 王德滋. 山东五莲七宝山辉石二长岩的地球化学及岩浆源区性质[J]. 地质论评, 1999, 45(增刊1): 612-617. |
[22] | 王郁. 山东七宝山金矿床地质特征及成因探讨[J]. 地质论评, 1991, 37(4): 329-337. |
[23] | 陈克荣, 潘永伟, 陈小明. 山东五莲七宝山早白垩世破火山口与火山: 侵入杂岩特征和成因[J]. 南京大学学报(自然科学版), 1993, 29 (1): 92-103. |
[24] | 谢元惠, 单伟, 于学峰, 等. 胶东白垩纪煌斑岩中单斜辉石再循环晶的识别及其地质意义[J]. 岩石学报, 2021, 37(7): 2203-2233. |
[25] |
WU Y B, ZHENG Y F. Tectonic evolution of a composite collision orogen: an overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428.
DOI URL |
[26] |
LIU J L, JI M, NI J L, et al. Inhomogeneous thinning of a cratonic lithospheric keel by tectonic extension: the Early Cretaceous Jiaodong Peninsula-Liaodong Peninsula Extensional Provinces, eastern North China Craton[J]. Geological Society of America Bulletin, 2021, 133(1/2): 159-176.
DOI URL |
[27] | 周建波, 郑永飞, 赵子福. 山东五莲中生代岩浆岩的锆石U-Pb年龄[J]. 高校地质学报, 2003, 9(2): 185-194. |
[28] |
LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[29] | 梁雨薇, 赖勇, 胡弘, 等. 山东省微山稀土矿正长岩类锆石U-Pb年代学及地球化学特征研究[J]. 北京大学学报(自然科学版), 2017, 53(4): 652-666. |
[30] |
MARKS M, HALAMA R, WENZEL T, et al. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral-melt trace-element partitioning[J]. Chemical Geology, 2004, 211(3/4): 185-215.
DOI URL |
[31] |
MORIMOTO N. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 39(1): 55-76.
DOI URL |
[32] |
PICHAVANT M, MACDONALD R. Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc[J]. Contributions to Mineralogy and Petrology, 2007, 154(5): 535-558.
DOI URL |
[33] |
PUTIRKA K D. Thermometers and barometers for volcanic systems[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 61-120.
DOI URL |
[34] | 黄小龙, 徐义刚, 杨启军, 等. 滇西莴中晚始新世高镁富钾火山岩中单斜辉石斑晶环带结构的成因:岩浆补给-混合过程[J]. 高校地质学报, 2007, 13(2): 250-260. |
[35] | FOSTER M D. Interpretation of the composition of trioctahedral micas[J]. US Geological Survey Scientific, 1960, 354: 1-49. |
[36] |
NACHIT H, IBHI A, ABIA E H, et al. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 2005, 337(16): 1415-1420.
DOI URL |
[37] |
WINCHESTER J A, FLOYD P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343.
DOI URL |
[38] | GILL J B. Orogenic andesites and plate tectonics[M]. Berlin: Springer-Verlag, 1981. |
[39] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[40] |
MCCOY-WEST A J, BAKER J A, FAURE K, et al. Petrogenesis and origins of mid-cretaceous continental intraplate volcanism in Marlborough, New Zealand: implications for the long-lived HIMU Magmatic Mega-Province of the SW Pacific[J]. Journal of Petrology, 2010, 51(10): 2003-2045.
DOI URL |
[41] |
SONG X Y, QI H W, ROBINSON P T, et al. Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume: evidence from the basal alkaline basalts in Dongchuan, Yunnan, southwestern China[J]. Lithos, 2008, 100(1/2/3/4): 93-111.
DOI URL |
[42] |
WANG Q, XU J F, JIAN P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2005, 47(1): 119-144.
DOI URL |
[43] |
SCHÄRER U, XU R H, ALLÈGRE C J. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet[J]. Earth and Planetary Science Letters, 1986, 77(1): 35-48.
DOI URL |
[44] | RUDNICK R, GAO S, HOLLAND H, et al. Composition of the continental crust[J]. The Crust, 2003, 3: 1-64. |
[45] |
SCHIANO P, MONZIER M, EISSEN J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 2010, 160(2): 297-312.
DOI URL |
[46] |
VILLEMANT B. Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment[J]. Contributions to Mineralogy and Petrology, 1988, 98(2): 169-183.
DOI URL |
[47] |
JIANG Y H, LIU Z, JIA R Y, et al. Miocene potassic granite-syenite association in western Tibetan Plateau: implications for shoshonitic and high Ba-Sr granite genesis[J]. Lithos, 2012, 134/135: 146-162.
DOI URL |
[48] |
CASHMAN K V, SPARKS R S J, BLUNDY J D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes[J]. Science, 2017, 355(6331): eaag3055.
DOI URL |
[49] |
KASZUBA J P, WENDLANDT R F. Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks[J]. Journal of Petrology, 2000, 41(3): 363-386.
DOI URL |
[50] |
ZHU Y S, YANG J H, WANG H, et al. Geochemical and Sr-Nd-Hf-O isotopic constraints on the source and petrogenesis of the Xiangshuigou silicic alkaline igneous complex from the northern margin of the North China Craton[J]. Lithos, 2020, 378/379: 105866.
DOI URL |
[51] |
DENG J F, MO X X, ZHAO H L, et al. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots-plume tectonics'[J]. Earth-Science Reviews, 2004, 65(3/4): 223-275.
DOI URL |
[52] |
SUN J F, ZHANG J H, YANG J H, et al. Tracing magma mixing and crystal-melt segregation in the genesis of syenite with mafic enclaves: evidence from in situ zircon Hf-O and apatite Sr-Nd isotopes[J]. Lithos, 2019, 334/335: 42-57.
DOI URL |
[53] |
BROWN P E, BECKER S M. Fractionation, hybridisation and magma-mixing in the Kialineq centre East Greenland[J]. Contributions to Mineralogy and Petrology, 1986, 92(1): 57-70.
DOI URL |
[54] |
PARKER D F. Origin of the trachyte-quartz trachyte-peralkalic rhyolite suite of the Oligocene Paisano volcano, Trans-Pecos Texas[J]. Geological Society of America Bulletin, 1983, 94(5): 614-629.
DOI URL |
[55] |
LI X Y, LI S Z, HUANG F, et al. Petrogenesis of high Ba-Sr plutons with high Sr/Y ratios in an intracontinental setting: evidence from Early Cretaceous Fushan monzonites, central North China Craton[J]. Geological Magazine, 2019, 156(12): 1-17.
DOI URL |
[56] |
MÜNKER C, PFÄNDER J A, WEYER S, et al. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics[J]. Science, 2003, 301(5629): 84-87.
DOI URL |
[57] |
PFÄNDER J A, MÜNKER C, STRACKE A, et al. Nb/Ta and Zr/Hf in ocean island basalts: implications for crust-mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 2007, 254(1/2): 158-172.
DOI URL |
[58] |
ERSOY Y, HELVACI C. FC-AFC-FCA and mixing modeler: a Microsoft Excel© spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing[J]. Computers and Geosciences, 2010, 36(3): 383-390.
DOI URL |
[59] |
TIEPOLO M, ZANETTI A, OBERTI R, et al. Trace-element partitioning between synthetic potassic-richterites and silicate melts, and contrasts with the partitioning behaviour of pargasites and kaersutites[J]. European Journal of Mineralogy, 2003, 15(2): 329-340.
DOI URL |
[60] |
FURMAN T, GRAHAM D. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province[J]. Lithos, 1999, 48(1/2/3/4): 237-262.
DOI URL |
[61] |
YAN X, JIANG S Y. Petrogenesis and tectonic implications of Early Cretaceous shoshonitic syenites in the northern Wuyi Mt Range, Southeast China[J]. Journal of Asian Earth Sciences, 2019, 180: 103877.
DOI URL |
[62] |
BEN OTHMAN D, WHITE W M, PATCHETT J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth and Planetary Science Letters, 1989, 94(1/2): 1-21.
DOI URL |
[63] |
WANG Q, WYMAN D A, XU J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu-Au mineralization[J]. Lithos, 2006, 89(3/4): 424-446.
DOI URL |
[64] |
HAWKESWORTH C J, TURNER S P, MCDERMOTT F, et al. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust[J]. Science, 1997, 276(5312): 551-555.
DOI URL |
[65] |
LAPORTE D, LAMBART S, SCHIANO P, et al. Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites[J]. Earth and Planetary Science Letters, 2014, 404: 319-331.
DOI URL |
[66] |
SEN C, DUNN T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 1994, 117(4): 394-409.
DOI URL |
[67] |
TIEPOLO M, VANNUCCI R, OBERTI R, et al. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems[J]. Earth and Planetary Science Letters, 2000, 176(2): 185-201.
DOI URL |
[68] |
FOLEY S, TIEPOLO M, VANNUCCI R. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 2002, 417(6891): 837-840.
DOI URL |
[69] | BODINIER J, KALFOUN F, GODARD M, et al. Nb/Ta geochemical reservoirs[C]// Proceedings of EGS-AGU-EUG Joint Assembly. Washington: American Geophysical Union, 2003: 11521. |
[70] |
YING J F, ZHOU X H, ZHANG H F. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source[J]. Lithos, 2004, 75(3/4): 413-426.
DOI URL |
[71] |
KARSTEN J L, KLEIN E M, SHERMAN S B. Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: implications of modern ridge subduction systems for the Archean[J]. Lithos, 1996, 37(2/3): 143-161.
DOI URL |
[72] |
NIU Y L, BATIZA R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 471-483.
DOI URL |
[73] |
GALE A, DALTON C A, LANGMUIR C H, et al. The mean composition of ocean ridge basalts[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(3): 489-518.
DOI URL |
[74] | SODER C. Geochemistry and petrology of lamprophyres from the Hellenides and the European Variscides[D]. Heidelberg: University of Heidelberg, 2017. |
[75] |
ZENG G, CHEN L H, XU X S, et al. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China[J]. Chemical Geology, 2010, 273(1/2): 35-45.
DOI URL |
[76] |
WANG C, LIU J C, ZHANG H D, et al. Geochronology and mineralogy of the Weishan carbonatite in Shandong Province, eastern China[J]. Geoscience Frontiers, 2019, 10(2): 769-785.
DOI URL |
[77] |
AYERS J C, PETERS T J. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1 000 ℃[J]. Geochimica et Cosmochimica Acta, 2018, 223: 60-74.
DOI URL |
[78] |
BORISOVA A Y, BINDEMAN I N, TOPLIS M J, et al. Zircon survival in shallow asthenosphere and deep lithosphere[J]. American Mineralogist, 2020, 105(11): 1662-1671.
DOI URL |
[79] |
LIU P L, MASSONNE H J, HARLOV D E, et al. High-pressure fluid-rock interaction and mass transfer during exhumation of deeply subducted rocks: insights from an eclogite-vein system in the ultrahigh-pressure terrane of the Dabie Shan, China[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(12): 5786-5817.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||