Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 464-475.DOI: 10.13745/j.esf.sf.2022.2.75
Previous Articles Next Articles
ZHU Ziyi1(), ZHOU Fei1, WANG Yu1, ZHOU Tong1, HOU Zhaoliang2, QIU Kunfeng1,3,*()
Received:
2021-12-16
Revised:
2022-03-18
Online:
2022-09-25
Published:
2022-08-24
Contact:
QIU Kunfeng
CLC Number:
ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination[J]. Earth Science Frontiers, 2022, 29(5): 464-475.
判别图解 | 准确率/% | |||
---|---|---|---|---|
岩浆锆石 | 热液锆石 | 变质锆石 | 平均 | |
Th/U | 81.65 | - | 23.5 | 73.1 |
LaN-(Sm/La)N | 42.4 | 20.9 | - | 38.5 |
Table 1 The accuracy of the published diagram to classify different zircon provenance
判别图解 | 准确率/% | |||
---|---|---|---|---|
岩浆锆石 | 热液锆石 | 变质锆石 | 平均 | |
Th/U | 81.65 | - | 23.5 | 73.1 |
LaN-(Sm/La)N | 42.4 | 20.9 | - | 38.5 |
序号 | 母岩类型 | 数据量 | 参考文献 |
---|---|---|---|
1 | 岩浆锆石 | 2466 | [ |
2 | 热液锆石 | 508 | [ |
3 | 变质锆石 | 524 | [ |
Table 2 Published data of zircon trace elements from different provenance
序号 | 母岩类型 | 数据量 | 参考文献 |
---|---|---|---|
1 | 岩浆锆石 | 2466 | [ |
2 | 热液锆石 | 508 | [ |
3 | 变质锆石 | 524 | [ |
元素 | 元素数据缺失率 | 元素 | 元素数据缺失率 | ||||
---|---|---|---|---|---|---|---|
热液 锆石 | 岩浆 锆石 | 变质 锆石 | 热液 锆石 | 岩浆 锆石 | 变质 锆石 | ||
La | 0% | 7% | 23% | Tm | 4% | 1% | 17% |
Ce | 0% | 0% | 0% | Yb | 0% | 0% | 0% |
Pr | 0% | 1% | 4% | Lu | 0% | 0% | 12% |
Nd | 0% | 0% | 2% | Y | 20% | 7% | 38% |
Sm | 0% | 0% | 1% | Hf | 27% | 8% | 41% |
Eu | 1% | 0% | 1% | Nb | 38% | 23% | 58% |
Gd | 0% | 0% | 0% | Ta | 36% | 67% | 65% |
Tb | 5% | 1% | 20% | Ti | 40% | 23% | 47% |
Dy | 0% | 0% | 0% | Pb | 42% | 79% | 78% |
Ho | 5% | 0% | 14% | Th | 13% | 2% | 15% |
Er | 0% | 0% | 2% | U | 13% | 2% | 15% |
Table 3 Missing data of zircon trace elements from different provenance
元素 | 元素数据缺失率 | 元素 | 元素数据缺失率 | ||||
---|---|---|---|---|---|---|---|
热液 锆石 | 岩浆 锆石 | 变质 锆石 | 热液 锆石 | 岩浆 锆石 | 变质 锆石 | ||
La | 0% | 7% | 23% | Tm | 4% | 1% | 17% |
Ce | 0% | 0% | 0% | Yb | 0% | 0% | 0% |
Pr | 0% | 1% | 4% | Lu | 0% | 0% | 12% |
Nd | 0% | 0% | 2% | Y | 20% | 7% | 38% |
Sm | 0% | 0% | 1% | Hf | 27% | 8% | 41% |
Eu | 1% | 0% | 1% | Nb | 38% | 23% | 58% |
Gd | 0% | 0% | 0% | Ta | 36% | 67% | 65% |
Tb | 5% | 1% | 20% | Ti | 40% | 23% | 47% |
Dy | 0% | 0% | 0% | Pb | 42% | 79% | 78% |
Ho | 5% | 0% | 14% | Th | 13% | 2% | 15% |
Er | 0% | 0% | 2% | U | 13% | 2% | 15% |
模型 | 准确率 | 最优超参数 |
---|---|---|
SVM(linear) | 0.868 | C = 16 |
SVM(RBF) | 0.802 | C=16,gamma = 0.5 |
KNN | 0.860 | weights = distance, n neighbors = 1 |
ANN | 0.899 | alpha = 0.001, activation = tanh, hidden layer sizes = (20,1) |
Random Forest | 0.878 | n estimators = 100, max depth = 30, max features = 16 |
Table 4 Hyper-parameters of the 4 models and the accuracy on the test set
模型 | 准确率 | 最优超参数 |
---|---|---|
SVM(linear) | 0.868 | C = 16 |
SVM(RBF) | 0.802 | C=16,gamma = 0.5 |
KNN | 0.860 | weights = distance, n neighbors = 1 |
ANN | 0.899 | alpha = 0.001, activation = tanh, hidden layer sizes = (20,1) |
Random Forest | 0.878 | n estimators = 100, max depth = 30, max features = 16 |
锆石类型 | 精确率 | 召回率 | F1分数 | 数量 |
---|---|---|---|---|
热液锆石 | 0.855 | 0.855 | 0.855 | 76 |
岩浆锆石 | 0.857 | 0.868 | 0.863 | 76 |
变质锆石 | 0.893 | 0.882 | 0.887 | 76 |
宏平均(macro) | 0.868 | 228 |
Table 5 Accuracy, recall, and F1 score of the test set in the SVM
锆石类型 | 精确率 | 召回率 | F1分数 | 数量 |
---|---|---|---|---|
热液锆石 | 0.855 | 0.855 | 0.855 | 76 |
岩浆锆石 | 0.857 | 0.868 | 0.863 | 76 |
变质锆石 | 0.893 | 0.882 | 0.887 | 76 |
宏平均(macro) | 0.868 | 228 |
[1] | 陈道公, 李彬贤, 夏群科, 等. 变质岩中锆石U-Pb计时问题评述: 兼论大别造山带锆石定年[J]. 岩石学报, 2001, 17 (1): 129-138. |
[2] | 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 32(3): 161-174. |
[3] |
VAVRA G, SCHMID R, GEBAUER D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 1999, 134(4): 380-404.
DOI URL |
[4] |
VAVRA G, GEBAUER D, SCHMID R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology, 1996, 122(4): 337-358.
DOI URL |
[5] |
MEZGER K, KROGSTAD E J. Interpretation of discordant U-Pb zircon ages: an evaluation[J]. Journal of Metamorphic Geology, 1997, 15(1): 127-140.
DOI URL |
[6] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[7] |
HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 215-230.
DOI URL |
[8] |
HERMANN J, RUBATTO D, KORSAKOV A, et al. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan)[J]. Contributions to Mineralogy and Petrology, 2001, 141(1): 66-82.
DOI URL |
[9] |
HOSKIN P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648.
DOI URL |
[10] | 雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(4): 273-284. |
[11] | 周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3173-3178. |
[12] |
RECANATI A, GROZAVU N, BENNANI Y, et al. Apatite (U-Th-Sm)/He date dispersion: first insights from machine learning algorithms[J]. Earth and Planetary Science Letters, 2021, 554: 116655.
DOI URL |
[13] | WANG Y, QIU K F, MÜLLER A, et al. Machine learning prediction of quartz forming-environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): 1-11. |
[14] | 黄发明, 潘李含, 姚池, 等. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713. |
[15] | GUO P, YANG T, XU W L, et al. Machine learning reveals source compositions of intraplate basaltic rocks[J]. Geochemistry Geophysics Geosystems, 2021, 22(9): e2021GC009946. |
[16] |
ZHONG R C, DENG Y, LI W B, et al. Revealing the multi-stage ore-forming history of a mineral deposit using pyrite geochemistry and machine learning-based data interpretation[J]. Ore Geology Reviews, 2021, 133: 104079.
DOI URL |
[17] | 周永章, 黎培兴, 王树功, 等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报, 2017, 36(2): 327-331, 344. |
[18] | 周志华. 机器学习[J]. 中国民商, 2016 (3): 93. |
[19] | 王瑀, 邱昆峰, 侯照亮, 等. 石英Ti/Ge-P: 基于机器学习的矿床类型判别新图解[J]. 岩石学报, 2022, 38(1): 281-290. |
[20] | 周统, 邱昆峰, 王瑀, 等. 磷灰石Eu/Y-Ce: 基于大数据的源区类型判别新图解[J]. 岩石学报, 2022, 38(1): 291-299. |
[21] | 周子扬. 机器学习与深度学习的发展及应用[J]. 电子世界, 2017 (23): 72-73. |
[22] |
SAMUEL A L. Some studies in machine learning using the game of checkers[J]. IBM Journal of Research and Development, 2000, 44(1/2): 206-226.
DOI URL |
[23] | 耿厅, 周永章, 李兴远, 等. 锆石微量元素对成矿岩体的判别: 来自大数据思维的应用[J]. 地质通报, 2019, 38(12): 1992-1998. |
[24] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777. |
[25] |
HARTMANN L A, BAGGIO S B, BRÜCKMANN M P, et al. U-Pb geochronology of Paranávolcanics combined with trace element geochemistry of the zircon crystals and zircon Hf isotope data[J]. Journal of South American Earth Sciences, 2019, 89: 219-226.
DOI URL |
[26] |
GUO L, ZHANG H F, HARRIS N, et al. Detrital zircon U-Pb geochronology, trace-element and Hf isotope geochemistry of the metasedimentary rocks in the Eastern Himalayan syntaxis: tectonic and paleogeographic implications[J]. Gondwana Research, 2017, 41: 207-221
DOI URL |
[27] |
YAN L L, HE Z Y, BEIER C, et al. Zircon trace element constrains on the link between volcanism and plutonism in SE China[J]. Lithos, 2018, 320/321: 28-34.
DOI URL |
[28] |
YAN L L, HE Z Y, KLEMD R, et al. Tracking crystal-melt segregation and magma recharge using zircon trace element data[J]. Chemical Geology, 2020, 542: 119596.
DOI URL |
[29] |
MELO M G, LANA C, STEVENS G, et al. Assessing the isotopic evolution of S-type granites of the Carlos Chagas Batholith, SE Brazil: clues from U-Pb, Hf isotopes, Ti geothermometry and trace element composition of zircon[J]. Lithos, 2017, 284/285: 730-750.
DOI URL |
[30] |
YUAN F, LIU J J, CARRANZA E J M, et al. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: a case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China[J]. Lithos, 2018, 302/303: 20-36.
DOI URL |
[31] |
TURLIN F, VANDERHAEGHE O, GERVAIS F, et al. Petrogenesis of LREE-rich pegmatitic granite dykes in the central Grenville Province by partial melting of Paleoproterozoic-Archean metasedimentary rocks: evidence from zircon U-Pb-Hf-O isotope and trace element analyses[J]. Precambrian Research, 2019, 327: 327-360.
DOI URL |
[32] |
WANG Q, ZHU D C, ZHAO Z D, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66.
DOI URL |
[33] |
DONG X, ZHANG Z M, NIU Y L, et al. Reworked Precambrian metamorphic basement of the Lhasa terrane, southern Tibet: Zircon/titanite U-Pb geochronology, Hf isotope and geochemistry[J]. Precambrian Research, 2020, 336: 105496.
DOI URL |
[34] |
ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al. Neoarchean (2.7-2.8 Ga) accretion beneath the North China Craton: U-Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites[J]. Lithos, 2009, 112(3/4): 188-202.
DOI URL |
[35] |
BORBA M L, TASSINARI C C G, MATOS F M V, et al. Tracking hydrothermal events using zircon REE geochemistry from the Carajás Mineral Province, Brazil[J]. Journal of Geochemical Exploration, 2021, 221: 106679.
DOI URL |
[36] | 张小文, 向华, 钟增球, 等. 海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定[J]. 地球科学: 中国地质大学学报, 2009, 34(6): 921-930. |
[37] | JIANG W C, LI H, EVANS N J, et al. Zircon records multiple magmatic-hydrothermal processes at the giant Shizhuyuan W-Sn-Mo-Bi polymetallic deposit, South China[J]. Ore Geology Reviews, 2019, 115: 103160. |
[38] |
TOSCANO M, PASCUAL E, NESBITT R W, et al. Geochemical discrimination of hydrothermal and igneous zircon in the Iberian pyrite belt, Spain[J]. Ore Geology Reviews, 2014, 56: 301-311.
DOI URL |
[39] |
SUN Y, WU T, XIAO L, et al. U-Pb ages, Hf-O isotopes and trace elements of zircons from the ore-bearing and ore-barren adakitic rocks in the Handan-Xingtai district: implications for petrogenesis and iron mineralization[J]. Ore Geology Reviews, 2019, 104: 14-25.
DOI URL |
[40] |
WANG M, GUO W F, YANG W T. Detrital zircon trace elements from the Mesozoic Jiyuan Basin, central China and its implication on tectonic transition of the Qinling Orogenic Belt[J]. Open Geosciences, 2019, 11(1): 125-139.
DOI URL |
[41] |
WANG R, JEON H, EVANS N J. Archaean hydrothermal fluid modified zircons at Sunrise Dam and Kanowna Belle gold deposits, Western Australia: implications for post-magmatic fluid activity and ore genesis[J]. American Mineralogist, 2018, 103(12): 1891-1905.
DOI URL |
[42] |
ZENG L J, NIU H C, BAO Z W, et al. Chemical lattice expansion of natural zircon during the magmatic-hydrothermal evolution of A-type granite[J]. American Mineralogist, 2017, 102(3): 655-665.
DOI URL |
[43] |
ZHANG W, JIANG S Y, GAO T S, et al. The effect of magma differentiation and degassing on ore metal enrichment during the formation of the world-class Zhuxi W-Cu skarn deposit: evidence from U-Pb ages, Hf isotopes and trace elements of zircon, and whole-rock geochemistry[J]. Ore Geology Reviews, 2020, 127: 103801.
DOI URL |
[44] |
WU M Q, TIAN B F, ZHANG D H, et al. Zircon of the No. 782 deposit from the Great Xing'an Range in NE China: implications for Nb-REE-Zr mineralization during magmatic-hydrothermal evolution[J]. Ore Geology Reviews, 2018, 102: 284-299.
DOI URL |
[45] |
ZHANG S H, ZHAO Y, YANG Z Y, et al. The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 588-600.
DOI URL |
[46] |
ZHAO L, GUO F, FAN W M, et al. Early Cretaceous potassic volcanic rocks in the Jiangnan Orogenic Belt, East China: crustal melting in response to subduction of the Pacific-Izanagi ridge?[J]. Chemical Geology, 2016, 437: 30-43.
DOI URL |
[47] |
ZHU M T, ZHANG L C, DAI Y P, et al. Hydrothermal modification of zircon geochemistry and Lu-Hf isotopes from the Hongtoushan Cu-Zn deposit, China[J]. Ore Geology Reviews, 2017, 86: 707-718.
DOI URL |
[48] | 秦亚, 冯佐海, 黄靖哲, 等. 桂北地区三门韧性剪切带的厘定及其构造意义[J]. 地球科学, 2021, 46(11): 4017-4032. |
[49] |
LI H, LI J W, ALGEO T J, et al. Zircon indicators of fluid sources and ore genesis in a multi-stage hydrothermal system: the Dongping Au deposit in North China[J]. Lithos, 2018, 314/315: 463-478.
DOI URL |
[50] |
TAKEHARA M, HORIE K, HOKADA T, et al. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth Gabbro[J]. Chemical Geology, 2018, 484: 168-178.
DOI URL |
[51] |
LEI W Y, SHI G H, SANTOSH M, et al. Trace element features of hydrothermal and inherited igneous zircon grains in mantle wedge environment: a case study from the Myanmar jadeitite[J]. Lithos, 2016, 266/267: 16-27.
DOI URL |
[52] |
BAO Z W, SUN W D, LI C J, et al. U-Pb dating of hydrothermal zircon from the Dongping gold deposit in North China: constraints on the mineralization processes[J]. Ore Geology Reviews, 2014, 61: 107-119.
DOI URL |
[53] |
WU J H, LI H, ALGEO T J, et al. Genesis of the Xianghualing Sn-Pb-Zn deposit, South China: a multi-method zircon study[J]. Ore Geology Reviews, 2018, 102: 220-239.
DOI URL |
[54] |
HAN J S, CHEN H Y, HOLLINGS P, et al. The formation of modified zircons in F-rich highly-evolved granites: an example from the Shuangji granites in Eastern Tianshan, China[J]. Lithos, 2019, 324/325: 776-788.
DOI URL |
[55] |
JIANG W C, LI H, TURNER S, et al. Timing and origin of multi-stage magmatism and related W-Mo-Pb-Zn-Fe-Cu mineralization in the Huangshaping deposit, South China: an integrated zircon study[J]. Chemical Geology, 2020, 552: 119782.
DOI URL |
[56] |
WEBER B, SCHMITT A K, CISNEROS DE LEÓN A, et al. Neoproterozoic extension and the Central Iapetus Magmatic Province in southern Mexico- New U-Pb ages, Hf-O isotopes and trace element data of zircon from the Chiapas Massif Complex[J]. Gondwana Research, 2020, 88: 1-20.
DOI URL |
[57] |
YANG Y, LIANG C Y, ZHENG C Q, et al. Metamorphic evolution of high-grade granulite-facies rocks of the Mashan Complex, Liumao area, eastern Heilongjiang Province, China: evidence from zircon U-Pb geochronology, geochemistry and phase equilibria modelling[J]. Precambrian Research, 2021, 355: 106095.
DOI URL |
[58] |
KIRKLAND C L, SLAGSTAD T, JOHNSON T E. Zircon as a metamorphic timekeeper: a case study from the Caledonides of central Norway[J]. Gondwana Research, 2018, 61: 63-72.
DOI URL |
[59] |
ZHANG S B, TANG J, ZHENG Y F. Contrasting Lu-Hf isotopes in zircon from Precambrian metamorphic rocks in the Jiaodong Peninsula: constraints on the tectonic suture between North China and South China[J]. Precambrian Research, 2014, 245: 29-50.
DOI URL |
[60] |
XIE S W, WU Y B, ZHANG Z M, et al. U-Pb ages and trace elements of detrital zircons from Early Cretaceous sedimentary rocks in the Jiaolai Basin, north margin of the Sulu UHP terrane: provenances and tectonic implications[J]. Lithos, 2012, 154: 346-360.
DOI URL |
[61] |
KOOIJMAN E, UPADHYAY D, MEZGER K, et al. Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: the Kadavur anorthosite complex, southern India[J]. Chemical Geology, 2011, 290(3/4): 177-188.
DOI URL |
[62] |
ROCHA B C, MORAES R, MÖLLER A, et al. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: insights from trace element composition of zircon, monazite and garnet coupled to U-Pb geochronology[J]. Lithos, 2017, 277: 337-355.
DOI URL |
[63] |
ZHONG R C, DENG Y, YU C. Multi-layer perceptron-based tectonic discrimination of basaltic rocks and an application on the Paleoproterozoic Xiong'er volcanic province in the North China Craton[J]. Computers and Geosciences, 2021, 149: 104717.
DOI URL |
[64] | HELSEL D R. More than obvious: better methods for interpreting nondetect data[J]. Environmental Science and Technology, 2005, 39(20): 419A-423A. |
[65] |
ROUSSEEUW P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
DOI URL |
[66] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
DOI URL |
[67] |
CRACKNELL M J, READING A M. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers and Geosciences, 2014, 63: 22-33.
DOI URL |
[68] | BREIMAN L. Arcing classifiers[J]. The Annals of Statistics, 1998, 26(3): 801-824. |
[69] |
BREIMAN L. Using iterated bagging to debias regressions[J]. Machine Learning, 2001, 45(3): 261-277.
DOI URL |
[70] | 韩帅, 李明超, 任秋兵, 等. 基于大数据方法的玄武岩大地构造环境智能挖掘判别与分析[J]. 岩石学报, 2018, 34(11): 3207-3216. |
[71] | CHANG C C, LIN C J. Libsvm[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. |
[72] |
HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[J]. BJU International, 2008, 101(1): 1396-1400.
DOI URL |
[73] | KOHONEN T. An introduction to neural computing[J]. Neural Networks, 1988, 1(1): 3-16. |
[74] |
BELOUSOVA E, GRIFFIN W, O'REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
DOI URL |
[75] | 邹心宇, 蒋济莲, 秦克章, 等. 锆石微量元素的理论基础及其应用研究进展[J]. 岩石学报, 2021, 37(4): 985-999. |
[1] | LU Shuangfang, WANG Jun, LI Wenbiao, CAO Yixin, CHEN Fangwen, LI Jijun, XUE Haitao, WANG Min. In-situ upgrading and transformation of low-maturity shale: Economic feasibility and efficiency enhancement approaches from the perspective of energy consumption ratio [J]. Earth Science Frontiers, 2023, 30(1): 187-198. |
[2] | FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 20-29. |
[3] | YANG Shufeng, JIA Chengzao, CHEN Hanlin, JIA Dong, WEI Guoqi, XIAO Ancheng, GUO Zhaojie, CHENG Xiaogan, WU Lei, YIN Hongwei, ZHANG Fengqi, LIN Xiubin. Core theories of sedimentary basin structure and the related key research techniques: Frontiers and development directions [J]. Earth Science Frontiers, 2022, 29(6): 10-23. |
[4] | GUO Tonglou. Superimposition and composition control on hydrocarbon reservoirs in multi-cycle basins: Concept and practice in conventional and unconventional natural gas explorations [J]. Earth Science Frontiers, 2022, 29(6): 109-119. |
[5] | JIA Chengzao, CHEN Zhuxin, LEI Yongliang, WANG Lining, REN Rong, SU Nan, YANG Geng. Deformation mechanisms and structural models of the fold-thrust belts of central and western China [J]. Earth Science Frontiers, 2022, 29(6): 156-174. |
[6] | FENG Zhiqiang, LI Meng, GUO Yuanling, LIU Guangxiang. Genetic analysis of typical strike-slip faults and related basins in China [J]. Earth Science Frontiers, 2022, 29(6): 206-223. |
[7] | GUAN Shuwei, LIANG Han, JIANG Hua, FU Xiaodong, GU Mingfeng, LEI Ming, CHEN Tao, YANG Rongjun. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin, southwestern China, and associated structures [J]. Earth Science Frontiers, 2022, 29(6): 252-264. |
[8] | HE Zhiliang, LU Jianlin, Lin Juanhua, JIN Xiaohui, QI Lixin, XU Xuhui, HUANG Renchun, WANG Yi. Marine basins in China—a prototype-reconstruction analyses and ordered hydrocarbon accumulation patterns [J]. Earth Science Frontiers, 2022, 29(6): 60-72. |
[9] | LIU Chiyang, HUANG Lei, ZHAO Junfeng, WANG Jianqiang, ZHANG Dongdong, ZHAO Hongge, SHAO Deyong, LIU Weishuai. Hydrocarbon occurrence and accumulation processes in reformed basins—theories outline [J]. Earth Science Frontiers, 2022, 29(6): 84-108. |
[10] | ZHANG Xiangtao, PENG Guangrong, WANG Guangzeng, LIU Xinying, ZHAO Li, YANG Yue, ZHAN Huawang, YU Haiyang, MA Xiaoqian, LI Sanzhong. Fault response to the Huizhou Movement in the Pearl River Mouth Basin: Insights from a case study of the Eastern Yangjiang Sag [J]. Earth Science Frontiers, 2022, 29(5): 161-175. |
[11] | ZHANG Yuting, DUAN Liqin, SONG Jinming, ZHANG Naixing, YIN Meiling, LI Xuegang, YUAN Huamao. Arsenic migration and transformation mechanism and microbial regulation at the sediment-water interface of the Changjiang estuary [J]. Earth Science Frontiers, 2022, 29(4): 144-155. |
[12] | CAO Jiangjun, LUO Jinglan, FAN Caiwei, LI Shanshan, WU Shijiu, FU Yong, SHI Xiaofan, DAI Long, HOU Jingxian. Deep thermal fluid activity and its influence on the diagenesis and pore evolution of reservoirs: A case study from the Miocene Huangliu Formation reservoir in the LDX area, Yinggehai Basin, northern South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 412-429. |
[13] | HE Yujiang, LIU Xiao, XING Linxiao, TAN Xianfeng, BU Xianbiao. Scaling process simulation and anti-scaling measures in karst geothermal field in Baoding, Hebei [J]. Earth Science Frontiers, 2022, 29(4): 430-437. |
[14] | LIU Haiyan, LIU Maohan, ZHANG Weimin, SUN Zhanxue, WANG Zhen, WU Tonghang, GUO Huaming. Distribution and fractionation of rare earth elements in high fluoride groundwater from the North China Plain [J]. Earth Science Frontiers, 2022, 29(3): 129-144. |
[15] | XIONG Guiyao, WU Jichun, YANG Yun, ZHU Xiaobin, LIU Mengwen, SONG Yalin. Microbial fields and multi-field coupling in organic contaminated soil-groundwater systems [J]. Earth Science Frontiers, 2022, 29(3): 189-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||