Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 420-437.DOI: 10.13745/j.esf.sf.2021.11.1
Previous Articles Next Articles
HAN Runsheng1,2(), ZHAO Dong1,2
Received:
2021-07-12
Revised:
2021-11-29
Online:
2022-09-25
Published:
2022-08-24
CLC Number:
HAN Runsheng, ZHAO Dong. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits—a preliminary study[J]. Earth Science Frontiers, 2022, 29(5): 420-437.
Fig.3 Discrimination of erosional degree (a) and multiple structural sections of the main ore fields or deposits (b) in southern Hunan. Modified after [84].
Fig.6 (a) Regional geological sketch map of the Huangshaping-Baoshan polymetallic ore field; (b) Schematic diagram illustrating the mechanical properties contributing to the symmetry of the tectono-magma-metallogenic system of the ore field; (c) Schematic diagram of spatial characteristics of the ‘twist flower' structure. (a modified after [85],b, c modified after [36])
Fig.7 (a) Profile sketch of F3 fault; (b, c) Tensile fault f1 and compressive fault f2; (d, e) Hydrothermal calcite and pyrite are filled in the tensile fault f7, and scratches can be seen on the calcite surface; (f, g) The north-south trending fault (f4-6); (h-k) Dense massive orebodies and strong calcite limestone are developed in the footwall of the near-north-south trending fault; (l) Hydrothermal calcite vein cut by fault f12; (m) NW-trending faults f14 and f15; (n, o) reconstruction of different stages palaeo-stress fields in the Huangshaping deposit
Fig.8 (a) Inversion of tectonic stress field after metallogenic period and metallogenic period in Huangshaping mining area; (b-e) combined pattern of magmatic intrusion contact structure
Fig.11 (a) Projection of lateralization and mineralization center of orebodies in Baoshan deposit; (b) 3D evolution trend of the center of Pb-Zn-Cu orebodies. a modified after [87].
[1] | 翟裕生, 邓军, 王建平, 等. 深部找矿研究问题[J]. 矿床地质, 2004, 23(2): 142-149. |
[2] | 陈国达. 成矿构造研究法[M]. 北京: 地质出版社, 1978: 1-376. |
[3] | 翟裕生, 石准立, 曾庆丰, 等. 矿田构造与成矿[M]. 北京: 地质出版社, 1981: 1-71. |
[4] | 翟裕生, 林新多. 矿田构造学[M]. 北京: 地质出版社, 1993: 158-161. |
[5] | 吕古贤, 林文蔚, 罗元华, 等. 构造物理化学与金矿成矿预测[M]. 北京: 地质出版社, 1999: 1-420. |
[6] | 孙家骢, 韩润生. 矿田地质力学理论与方法[M]. 北京: 科学出版社, 2016: 1-356. |
[7] | 叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法: 总论[M]. 北京: 地质出版社, 2014. |
[8] | 叶天竺, 韦昌山, 王玉往, 等. 勘查区找矿预测理论与方法: 各论[M]. 北京: 地质出版社, 2017. |
[9] | 方维萱, 杜玉龙, 李建旭, 等. 大比例尺构造岩相学填图技术与找矿预测[M]. 北京: 地质出版社, 2018: 1-349. |
[10] | 韩润生, 马德云, 刘丛强. 陕西铜厂矿田构造成矿动力学[M]. 昆明: 云南科技出版社, 2003: 1-171. |
[11] | 方维萱. 岩浆侵入构造系统Ⅰ: 构造岩相学填图技术研发与找矿预测效果[J]. 大地构造与成矿学, 2019, 43(3): 473-506. |
[12] | 韩润生, 吴鹏, 王峰, 等. 论热液矿床深部大比例尺“四步式”找矿方法: 以川滇黔接壤区毛坪富锗铅锌矿为例[J]. 大地构造与成矿学, 2019, 43(2): 246-257. |
[13] | 韩润生, 邹海俊, 吴鹏, 等. 楚雄盆地砂岩型铜矿床构造-流体耦合成矿模型[J]. 地质学报, 2010, 84(10): 1438-1447. |
[14] | 韩润生, 王峰, 赵高山, 等. 滇北东矿集区昭通毛坪铅锌矿床深部找矿新进展[J]. 地学前缘, 2010, 17(3): 275. |
[15] | 韩润生, 张艳, 王峰, 等. 滇东北矿集区富锗铅锌矿床成矿机制与隐伏矿定位预测[M]. 北京: 科学出版社, 2019: 1-507. |
[16] | 方维萱, 包昌良, 曾宝成. 岩相学填图技术在云南东川白锡腊铁铜矿段深部应用试验与找矿预测[J]. 矿物学报, 2012, 32(1): 104-117. |
[17] | 方维萱, 韩润生. 云贵高原-造山带-沉积盆地的构造演化与成岩成矿作用(代序)[J]. 大地构造与成矿学, 2014, 38(4): 729-732. |
[18] |
吕古贤, 霍庆龙, 袁月蕾, 等. 胶东金矿陆内构造岩浆核杂岩隆起-拆离带蚀变成矿[J]. 地学前缘, 2017, 24(2): 95-103.
DOI |
[19] | 吕古贤, 张宝林, 胡宝群, 等. 矿田构造变形岩相分类与应用效果[J]. 地质通报, 2020, 39(11): 1669-1680. |
[20] | 邓军, 侯增谦, 莫宣学, 等. 三江特提斯复合造山与成矿作用[J]. 矿床地质, 2010, 29(1): 37-42. |
[21] | 邓军, 杨立强, 葛良胜, 等. 滇西富碱斑岩型金成矿系统特征与变化保存[J]. 岩石学报, 2010, 26(6): 1633-1645. |
[22] | 邓军, 王长明, 李龚健. 三江特提斯叠加成矿作用样式及过程[J]. 岩石学报, 2012, 28(5): 1349-1361. |
[23] | 张贵山, 方维萱, 彭仁, 等. 云南个旧三叠纪高钾质火山岩锆石U-Pb年代学、岩石成因及构造意义[J]. 大地构造与成矿学, 2019, 43(6): 1219-1235. |
[24] | 祝新友, 王艳丽, 程细音, 等. 湖南瑶岗仙石英脉型钨矿床成矿系统[J]. 矿床地质, 2015, 34(5): 874-894. |
[25] | 祝新友, 傅迷, 程细音, 等. “带外脉式”钨矿床成矿模型: 以湖南白云仙钨矿田头天门矿床为例[J]. 矿床地质, 2017, 36(1), 107-125. |
[26] | 吴海枝, 韩润生, 吴鹏. 楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 398-411. |
[27] | 陈正乐, 周永贵, 韩凤彬, 等. 天山山脉剥露程度与矿产保存关系初探[J]. 地球科学: 中国地质大学学报, 2012, 37(5): 903-916. |
[28] | 陈正乐, 陈柏林, 李厚民, 等. 河北承德大庙铁矿床地质构造特征与找矿预测[J]. 地质学报, 2014, 88(12): 2339-2350. |
[29] | 胡煜昭, 赵玉民, 刘路, 等. 贵州晴隆锑矿床复式半地堑-盆地流体的成矿耦合关系研究[J]. 大地构造与成矿学, 2014, 38(4): 802-812. |
[30] | 董树文, 李廷栋, 陈宣华, 等. 我国深部探测技术与实验研究进展综述[J]. 地球物理学报, 2012, 55(12): 3884-3901. |
[31] |
DONG S W, LI T D, LÜ Q T, et al. Progress in deep lithospheric exploration of the continental China: a review of the SinoProbe[J]. Tectonophysics, 2013, 606: 1-13.
DOI URL |
[32] | 董树文, 李廷栋, 高锐, 等. 地球深部探测国际发展与我国现状综述[J]. 地质学报, 2010, 84(6): 743-770. |
[33] | 翟裕生. 关于矿床学创新问题的探讨[J]. 地学前缘, 2006, 13(3): 1-7. |
[34] | 韩润生, 胡煜昭, 王学琨, 等. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报, 2012, 86(2): 280-294. |
[35] | 韩润生, 王峰, 胡煜昭, 等. 会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J]. 大地构造与成矿学, 2014, 38(4): 758-771. |
[36] |
韩润生, 赵冻, 吴鹏, 等. 湘南黄沙坪铜锡多金属矿床构造控岩控矿机制及深部找矿勘查启示[J]. 地学前缘, 2020, 27(4): 199-218.
DOI |
[37] | 王明志, 韩润生, 张艳. 成矿构造体系对铅锌成矿系统的控制作用: 以会泽富锗铅锌矿床为例[J]. 地质学报, 2020, 94(10): 3008-3023. |
[38] | 韩润生. 一种热液矿床的大比例尺蚀变岩相定位预测方法: ZL2014 1 0397600.7[P]. 2014-08-13. |
[39] | 韩润生, 王雷, 方维萱, 等. 初论云南易门地区凤山铜矿床刺穿构造岩-岩相分带模式[J]. 地质通报, 2011, 30(4): 495-504. |
[40] |
HAN R S, REN T, LI W C, et al. Discovery of the large-scale Huangtian scheelite deposit and implications for the structural control of tungsten mineralization in southeastern Yunnan, South China[J]. Ore Geology Reviews, 2020, 121: 103480.
DOI URL |
[41] | 王雷, 蒋宗和, 韩润生, 等. 湘南长城岭矿区首次发现超大型铷矿床[J]. 昆明理工大学学报(自然科学版), 2019, 44(4): 1-4. |
[42] | 董树文, 马立成, 刘刚, 等. 论长江中下游成矿动力学[J]. 地质学报, 2011, 85(5): 612-625. |
[43] |
吕庆田, 孟贵祥, 严加永, 等. 长江中下游成矿带铁-铜成矿系统结构的地球物理探测: 综合分析[J]. 地学前缘, 2020, 27(2): 232-253.
DOI |
[44] | 吕古贤, 孙岩, 刘德良, 等. 构造地球化学的回顾与展望[J]. 大地构造与成矿学, 2011, 35(4): 479-494. |
[45] | 吕古贤. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报, 2019, 25(5): 962-980. |
[46] | 钱建平. 广西灌阳地区碳酸盐岩层滑断裂构造地球化学系统[J]. 矿物学报, 1994, 14(4): 348-356. |
[47] | 钱建平, 吴正鹏, 唐专武, 等. 中国南方碳酸盐岩系层滑断裂控矿和成矿研究[J]. 地质通报, 2020, 39(11): 1850-1857. |
[48] | 韩润生. 隐伏矿定位预测的矿田(床)构造地球化学方法[J]. 地质通报, 2005, 24(10/11): 978-984. |
[49] | 韩润生. 构造地球化学近十年主要进展[J]. 矿物岩石地球化学通报, 2013, 32(2): 198-203. |
[50] |
HAN R S, CHEN J, WANG F, et al. Analysis of metal-element association halos within fault zones for the exploration of concealed ore-bodies: a case study of the Qilinchang Zn-Pb-(Ag-Ge) deposit in the Huize mine district, northeastern Yunnan, China[J]. Journal of Geochemical Exploration, 2015, 159: 62-78.
DOI URL |
[51] | 韩润生, 陈进, 李元, 等. 云南会泽麒麟厂铅锌矿床构造地球化学及定位预测[J]. 矿物学报, 2001, 21(4): 667-673. |
[52] | 王雷, 韩润生, 黄建国, 等. 云南易门凤山铜矿床59#矿体分布区断裂构造地球化学特征及成矿预测[J]. 大地构造与成矿学, 2010, 34(2): 233-238. |
[53] | 吴鹏, 韩润生, 冉崇英, 等. 云南易门凤山铜矿床“阶梯空当”定位矿体及其构造地球化学异常证据[J]. 大地构造与成矿学, 2014, 38(4): 879-884. |
[54] |
HAN R S, LI W Y, CHENG R H, et al. 3D high-precision tunnel gravity exploration theory and its application for concealed inclined high-density ore deposits[J]. Journal of Applied Geophysics, 2020, 180: 104119.
DOI URL |
[55] | 吕庆田, 廉玉广, 赵金花. 反射地震技术在成矿地质背景与深部矿产勘查中的应用: 现状与前景[J]. 地质学报, 2010, 84(6): 771-787. |
[56] | 吕庆田, 侯增谦, 杨竹森, 等. 长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束[J]. 中国科学D辑: 地球科学, 2004(9): 2-13. |
[57] | 陈宣华, 邵兆刚, 熊小松, 等. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 2019, 46(5): 995-1020. |
[58] | 郑向光, 卢琳, 刘会毅, 等. 小秦岭地区矿田构造深部探测初步认识[J]. 物探与化探, 2020, 44(4): 894-904. |
[59] | 崔志强, 胥值礼, 李飞, 等. 基于高精度航空磁测的塔西南坳陷深部地质构造研究[J]. 地质与勘探, 2020, 56(6): 1238-1250. |
[60] | 张鹏辉, 张小博, 方慧, 等. 地球物理资料揭示的嫩江-八里罕断裂中段深浅构造特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 261-272. |
[61] | 滕吉文. 强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J]. 地质通报, 2006, 25(7): 767-771. |
[62] |
董树文, 李廷栋, 陈宣华, 等. 深部探测揭示中国地壳结构、深部过程与成矿作用背景[J]. 地学前缘, 2014, 21(3): 201-225.
DOI |
[63] |
MOTAGHI K, SHABANIAN E, NOZAD-KHALIL T. Deep structure of the western coast of the Makran subduction zone, SE Iran[J]. Tectonophysics, 2020, 776: 228314.
DOI URL |
[64] |
ALBERS E, KAHL W A, BEYER L, et al. Variant across-forearc compositions of slab-fluids recorded by serpentinites: implications on the mobilization of FMEs from an active subduction zone (Mariana forearc)[J]. Lithos, 2020, 364/365: 105525.
DOI URL |
[65] |
NASRI S, NEJATI KALATE A, ROSHANDEL KAHOO A, et al. New insights into the structural model of the Makran subduction zone by fusion of 3D inverted geophysical models[J]. Journal of Asian Earth Sciences, 2020, 188: 104075.
DOI URL |
[66] |
LOWELL J D, GUILBERT J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 1970, 65(4): 373-408.
DOI URL |
[67] | HOLLISTER V F. Geology of the porphyry copper deposits of the western Hemis here[C]. New York: Soc Mining Engineers AIME, 1978: 219. |
[68] | PIRAJNO F. Hydrothermal Processes and Mineral Systems[M]. Berlin: Springer, 2009. |
[69] |
SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41.
DOI URL |
[70] | 侯增谦. 斑岩Cu-Mo-Au矿床:新认识与新进展[J]. 地学前缘, 2004, 11(1): 131-144. |
[71] | SILLITOE R H, PORTER T M. Major regional factors favouring large size, high hypogene grade, elevated gold content and supergene oxidation and enrichment of porphyry copper deposits[J]. Porphyry and Hydrothermal Copper and Gold Deposits, A Global Perspective, 1998: 21-34. |
[72] |
HEINRICH C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study[J]. Mineralium Deposita, 2005, 39(8): 864-889.
DOI URL |
[73] |
HAN R S, LIU C Q, EMMANUEL J M C, et al. REE geochemistry of altered fault tectonites of Huize-type Zn-Pb-(Ge-Ag) deposit, Yunnan Province, China[J]. Geochemistry Exploration Environment Analysis, 2012, 12: 127-146.
DOI URL |
[74] | 赵冻, 韩润生, 任涛, 等. 滇东北大型矿集区乐红大型铅锌矿床矿化蚀变分带模式[J]. 矿物岩石地球化学通报, 2016, 35(6): 1258-1269. |
[75] |
ZHAO D, HAN R S, WANG L, et al. Genesis of the Lehong large zinc-lead deposit in northeastern Yunnan, China: evidences from geological characteristics and C-H-O-S-Pb isotopic compositions[J]. Ore Geology Reviews, 2021, 135: 104219.
DOI URL |
[76] | 翟裕生, 邓军, 彭润民. 矿床变化与保存的研究内容和研究方法[J]. 地球科学, 2000, 25(4): 340-345. |
[77] |
REINERS P W, ZHOU Z, EHLERS T A, et al. Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track thermochronology[J]. American Journal of Science, 2003, 303: 489-518.
DOI URL |
[78] |
VALLA P G, HERMAN F, VAN DER BEEK P A, et al. Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history-I: theory and conceptual model[J]. Earth and Planetary Science Letters, 2010, 295(3/4): 511-522.
DOI URL |
[79] |
王建平, 翟裕生, 刘家军, 等. 矿床变化与保存研究的裂变径迹新途径[J]. 地球科学进展, 2008, 23(4): 421-427.
DOI |
[80] |
VAN DER BEEK P A, VALLA P G, HERMAN F, et al. Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history-II: application to the French Western Alps[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 9-22.
DOI URL |
[81] |
GUILLAUME B, GAUTHERON C, SIMON-LABRIC T, et al. Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology[J]. Earth and Planetary Science Letters, 2013, 364: 157-167.
DOI URL |
[82] |
KESLER S E, WILKINSON B H. The role of exhumation in the temporal distribution of ore deposits[J]. Economic Geology, 2006, 101(5): 919-922.
DOI URL |
[83] |
WANG Y N, CAI K D, SUN M, et al. Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track (AFT) dating: implication for the preservation of epithermal deposits in the ancient orogenic belt[J]. Ore Geology Reviews, 2018, 100: 111-132.
DOI URL |
[84] | 湖南省湘南地质勘察院. 湖南省湘南地区1∶200000区域地质图[Z]. 郴州: 湖南省湘南地质勘察院, 2018. |
[85] | 湖南省湘南地质勘察院. 湖南省桂阳县黄沙坪-宝山矿田1∶50000区域地质图[Z]. 郴州:湖南省湘南地质勘察院, 2018. |
[86] | 谌鹏远, 吴鹏, 韩润生, 等. 湖南宝山铜铅锌多金属矿床构造控岩控矿模式[J]. 地质力学学报, 2020, 26(3): 405-418. |
[87] | 湖南省湘南地质勘察院. 湖南省桂阳县黄沙坪铅锌矿1∶20000区域地质图[Z]. 郴州:湖南省湘南地质勘察院, 2011. |
[1] | LI Guowu. New minerals and their related research innovation and exploration [J]. Earth Science Frontiers, 2020, 27(5): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||