Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 410-419.DOI: 10.13745/j.esf.sf.2021.9.61
Previous Articles Next Articles
ZHOU Botao1,2(), CAI Yiheng1,2,3, HAN Zhenyu4
Received:
2021-08-04
Revised:
2021-09-21
Online:
2022-09-25
Published:
2022-08-24
CLC Number:
ZHOU Botao, CAI Yiheng, HAN Zhenyu. Regional rainstorm changes in China: Ensemble projection via RegCM4 dynamical downscaling[J]. Earth Science Frontiers, 2022, 29(5): 410-419.
Fig.1 Temporal evolution of (a) frequency, (b) duration, (c) average precipitation amount, (d) average influential area, and (e) comprehensive intensity of regional rainstorm events averaged over China (time series is smoothed with 20-year running mean) simulated by MME and its ensemble members
指标 | 各模式下的指标值 | ||||
---|---|---|---|---|---|
CdR | EdR | HdR | MdR | MME | |
频次 | 1.59 | 1.73 | 0.75 | 0.86 | 1.23 |
持续时间/d | 1.18 | 0.36* | 1.44 | 0.18* | 0.81 |
平均降水量/mm | 0.67 | 0.45 | 0.59 | 0.51 | 0.56 |
反映平均影响范围的网格点数 | 1.34 | 0.65 | 0.97 | 1.48 | 1.14 |
综合强度/102 | 2.15 | 1.04 | 1.85 | 1.42 | 1.65 |
Table 1 MME and individual model projected trends of the percentage anomalies (relative to 1986-2005) of the metrics for the regional rainstorm events averaged over China during 2006-2099 (%)
指标 | 各模式下的指标值 | ||||
---|---|---|---|---|---|
CdR | EdR | HdR | MdR | MME | |
频次 | 1.59 | 1.73 | 0.75 | 0.86 | 1.23 |
持续时间/d | 1.18 | 0.36* | 1.44 | 0.18* | 0.81 |
平均降水量/mm | 0.67 | 0.45 | 0.59 | 0.51 | 0.56 |
反映平均影响范围的网格点数 | 1.34 | 0.65 | 0.97 | 1.48 | 1.14 |
综合强度/102 | 2.15 | 1.04 | 1.85 | 1.42 | 1.65 |
指标 | 各时期的指标值 | ||
---|---|---|---|
1986—2005 | 2046—2005 | 2080—2099 | |
总频次 | 37.1 | 41.7 | 39.5 |
持续时间/d | 2.2 | 2.3 | 2.4 |
平均降水量/mm | 68.8 | 72.0 | 72.5 |
反映平均影响范围的网格点数 | 79.0 | 85.0 | 88.0 |
综合强度/102 | 8.7 | 9.7 | 10.1 |
Table 2 MME simulated values of the regional rainstorm events over China for different periods
指标 | 各时期的指标值 | ||
---|---|---|---|
1986—2005 | 2046—2005 | 2080—2099 | |
总频次 | 37.1 | 41.7 | 39.5 |
持续时间/d | 2.2 | 2.3 | 2.4 |
平均降水量/mm | 68.8 | 72.0 | 72.5 |
反映平均影响范围的网格点数 | 79.0 | 85.0 | 88.0 |
综合强度/102 | 8.7 | 9.7 | 10.1 |
Fig.2 MME simulated distribution of the percentage (%) of (a) duration, (b) average precipitation amount, (c) average influential area, and (d) comprehensive intensity of regional rainstorm events at different scales to the total events over China. The abscissa in (b), (c), and (d) indicates the mean value of the range.
Fig.4 MME projected changes (relative to 1986-2005) of (a1, a2) frequency, (b1, b2) duration (days), and (c1, c2) accumulative precipitation amount (mm) of regional rainstorm events during the middle (left-hand panels) and the end (right-hand panels) of the 21st century
Fig.5 Spatial distribution of the SNR for (a1, a2) frequency, (b1, b2) duration (days), and (c1, c2) accumulative precipitation amount (mm) of regional rainstorm events during the middle (left-hand panels) and the end (right-hand panels) of the 21st century (the number in the lower left corner indicates the proportion of areas where the SNR is larger than 1)
[1] | WMO. State of the Global Climate 2020[M]. World Meteorological Organization, 2021, WMO-No. 1264. 52. |
[2] | IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2013: 1535. |
[3] | FIELD C B, BARROS V, STOCKER T F, et al. Managing the risks of extreme events and disasters to advance climate change adaptation[M]. Cambridge: Cambridge University Press, 2012: 582. |
[4] | 秦大河, 张建云, 闪淳昌, 等. 中国极端天气气候事件和灾害风险管理与适应国家评估报告[M]. 北京: 科学出版社, 2015: 377. |
[5] | 吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015, 58(9): 3048-3060. |
[6] |
SUN J Q, AO J. Changes in precipitation and extreme precipitation in a warming environment in China[J]. Chinese Science Bulletin, 2013, 58(12): 1395-1401.
DOI URL |
[7] |
CHEN H P, SUN J Q, CHEN X L, et al. CGCM projections of heavy rainfall events in China[J]. International Journal of Climatology, 2012, 32(3): 441-450.
DOI URL |
[8] |
WANG H J, SUN J Q, CHEN H P, et al. Extreme climate in China: facts, simulation and projection[J]. Meteorologische Zeitschrift, 2012, 21(3): 279-304.
DOI URL |
[9] |
CHEN H P. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models[J]. Chinese Science Bulletin, 2013, 58(12): 1462-1472.
DOI URL |
[10] |
ZHOU B T, WEN Q H, XU Y, et al. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J]. Journal of Climate, 2014, 27(17): 6591-6611.
DOI URL |
[11] | 徐影, 张冰, 周波涛, 等. 基于CMIP5模式的中国地区未来洪涝灾害风险变化预估[J]. 气候变化研究进展, 2014, 10(4): 268-275. |
[12] |
XU Y, WU J, SHI Y, et al. Change in extreme climate events over China based on CMIP5[J]. Atmospheric and Oceanic Science Letters, 2015, 8(4): 185-192.
DOI URL |
[13] |
LI W, JIANG Z H, XU J J, et al. Extreme precipitation indices over China in CMIP5 models. part II: probabilistic projection[J]. Journal of Climate, 2016, 29(24): 8989-9004.
DOI URL |
[14] |
XU Y, GAO X J, GIORGI F, et al. Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values andperiods based on a CMIP5 ensemble[J]. Advances in Atmospheric Sciences, 2018, 35(4): 376-388.
DOI URL |
[15] |
RAO X Q, LU X, DONG W J. Evaluation and projection of extreme precipitation over Northern China in CMIP5 models[J]. Atmosphere, 2019, 10(11): 691.
DOI URL |
[16] |
WANG X X, JIANG D B, LANG X M. Extreme temperature and precipitation changes associated with four degree of global warming above pre-industrial levels[J]. International Journal of Climatology, 2019, 39(4): 1822-1838.
DOI URL |
[17] |
TU K, YAN Z W, WANG Y. A spatial cluster analysis of heavy rains in China[J]. Atmospheric and Oceanic Science Letters, 2011, 4(1): 36-40.
DOI URL |
[18] |
REN F M, CUI D L, GONG Z Q, et al. An objective identification technique for regional extreme events[J]. Journal of Climate, 2012, 25(20): 7015-7027.
DOI URL |
[19] |
CHEN Y, ZHAI P M. Persistent extreme precipitation events in China during 1951-2010[J]. Climate Research, 2013, 57(2): 143-155.
DOI URL |
[20] | 景丞, 姜彤, 王艳君, 等. 中国区域性极端降水事件及人口经济暴露度研究[J]. 气象学报, 2016, 74(4): 572-582. |
[21] | 叶殿秀, 王遵娅, 高荣, 等. 1961-2016年我国区域性暴雨过程的客观识别及其气候特征[J]. 气候变化研究进展, 2019, 15(6): 575-583. |
[22] |
WU Y J, JI H X, WEN J H, et al. The characteristics of regional heavy precipitation events over eastern monsoon China during 1960-2013[J]. Global and Planetary Change, 2019, 172: 414-427.
DOI URL |
[23] |
YU E T, SUN J Q, CHEN H P, et al. Evaluation of a high-resolution historical simulation over China: climatology and extremes[J]. Climate Dynamics, 2015, 45(7/8): 2013-2031.
DOI URL |
[24] |
GAO X J, SHI Y, HAN Z Y, et al. Performance of RegCM4 over major river basins in China[J]. Advances in Atmospheric Sciences, 2017, 34(4): 441-455.
DOI URL |
[25] |
SHI Y, WANG G L, GAO X J. Role of resolution in regional climate change projections over China[J]. Climate Dynamics, 2018, 51(5/6): 2375-2396.
DOI URL |
[26] |
WU J, GAO X J. Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations[J]. Climate Dynamics, 2020, 54(1/2): 1113-1130.
DOI URL |
[27] | WU J, HAN Z Y, XU Y, et al. Changes in extreme climate events in China under 1.5 ℃-4 ℃ global warming targets: projections using an ensemble of regional climate model simulations[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(2): e2019JD031057. |
[28] |
GIORGI F, COPPOLA E, SOLMON F, et al. RegCM4:model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 2012, 52: 7-29.
DOI URL |
[29] |
GAO X J, SHI Y, GIORGI F. Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surfacemodel[J]. Atmospheric and Oceanic Science Letters, 2016, 9(4): 246-254.
DOI URL |
[30] |
GAO X J, WU J, SHI Y, et al. Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations[J]. Atmospheric and Oceanic Science Letters, 2018, 11(4): 291-299.
DOI URL |
[31] | HAN Z Y, ZHOU B T, XU Y, et al. Projected changes in haze pollution potential in China: an ensemble of regional climatemodel simulations[J]. Atmospheric Chemistry and Physics, 2017, 17(16): 10109-10123. |
[32] | 蔡怡亨, 韩振宇, 周波涛. 对基于RegCM4降尺度的中国区域性暴雨事件模拟评估[J]. 气候变化研究进展, 2021, 17(4): 420-429. |
[33] | 李博, 周天军. 基于IPCC A1B情景的中国未来气候变化预估: 多模式集合结果及其不确定性[J]. 气候变化研究进展, 2010, 6(4): 270-276. |
[1] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[2] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[3] | LI Shuguang, WANG Yang, LIU Sheng’ao. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability [J]. Earth Science Frontiers, 2024, 31(1): 15-27. |
[4] | LIU Congqiang, LI Siliang, LIU Xueyan, WANG Baoli, LANG Yunchao, DING Hu, HAO Liping, ZHANG Qiongyu. Biogeochemical cycles in the Anthropocene and its significance [J]. Earth Science Frontiers, 2024, 31(1): 455-466. |
[5] | JIANG Nanxuan, YAN Qing, WANG Huijun. Transient and time-slice simulations of global climate change during the Last Interglacial: Model-model and model-data comparisons [J]. Earth Science Frontiers, 2024, 31(1): 486-499. |
[6] | ZHANG Chenggang, WEI Jing, ZHANG Yutao, WANG Ran, HOU Zhaoshuo, ZHAO Jingxuan, ZHANG Xinran. Soil Sr, Mg, Ca in upstream watersheds of the Guanting and Miyun Reservoirs as climate indicators [J]. Earth Science Frontiers, 2023, 30(6): 485-492. |
[7] | YAN Qing. Climate change and the associated glacier response in High-Mountain Asia during the mid-Holocene: A modeling study [J]. Earth Science Frontiers, 2022, 29(5): 372-381. |
[8] | SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies [J]. Earth Science Frontiers, 2022, 29(5): 342-354. |
[9] | ZHANG Xu, ZHANG Weichen, WANG Zhenqian, ZHENG Kai, DENG Fengfei. The Glacial North Atlantic “Capacitor” effect controlled by seasonal sea ice change [J]. Earth Science Frontiers, 2022, 29(5): 334-341. |
[10] | TAN Ning, ZHANG Zhongshi, GUO Zhengtang, WANG Huijun. Modeling study of the impact of tropical seaway changes on East Asian climate [J]. Earth Science Frontiers, 2022, 29(5): 310-321. |
[11] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[12] | LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods [J]. Earth Science Frontiers, 2022, 29(5): 285-299. |
[13] | JIA Yonggang, RUAN Wenfeng, HU Naili, QIAO Yue, LI Zhenghui, HU Cong. Hydrate dissociation on the northern slope of the South China Sea: Potential effects from climate warming in the current warm period [J]. Earth Science Frontiers, 2022, 29(4): 191-201. |
[14] | ZHANG Yang, XU Jishang, LI Guangxue, LIU Yong. ENSO-like patterns and its driving mechanism in Western Pacific Warm Pool during the glacial cycles [J]. Earth Science Frontiers, 2022, 29(4): 168-178. |
[15] | WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view [J]. Earth Science Frontiers, 2022, 29(4): 156-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||