Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 319-329.DOI: 10.13745/j.esf.sf.2022.6.11
Previous Articles Next Articles
ZHANG Qi1,2(), ZHAI Mingguo1,2, WEI Chunjing3, ZHOU Ligang1,2, CHEN Wanfeng4, JIAO Shoutao5,6, WANG Yue7, YUAN Fanglin1,2
Received:
2022-05-20
Revised:
2022-06-10
Online:
2022-07-25
Published:
2022-07-28
CLC Number:
ZHANG Qi, ZHAI Mingguo, WEI Chunjing, ZHOU Ligang, CHEN Wanfeng, JIAO Shoutao, WANG Yue, YUAN Fanglin. Innovative petrogenetic classification of granitoids: Perspective from metamorphic anatexis and big data[J]. Earth Science Frontiers, 2022, 29(4): 319-329.
Fig.3 Schematic p-T diagram showing the metamorphic evolution within crust and the heating paths driven by mantle uprising. Basemap modified after [19].
Fig.5 Mode-box diagrams showing the variation in mode of minerals and melt for a metabasite with MORB composition during an isobaric heating under pressure of 0.7 GPa (a) and 1.5 GPa (b). Adapted from [10].
Fig.10 REE distributions of TTG and the comparison with post-Archean granites(a) and REE distributions of amphibole, garnet and plagioclase (b). Adapted from [45,48].
[1] | CHAPPELL B W, WHITE A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174. |
[2] | CHAPPELL B W, WHITE A J R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth and Environmental Science, 1992, 83(1/2): 1-26. |
[3] | 张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008. |
[4] | WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discriminations and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. |
[5] | PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94. |
[6] | FOLEY S F, TIEPOLO M, VANNUCCI R. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 2002, 417(6891): 637-640. |
[7] | FOLEY S F, BUHRE S, JACOB D E. Evolution of the Archaean crust by delamination and shallow subduction[J]. Nature, 2003, 421(6920): 249-252. |
[8] | MOYEN J F, STEVENS G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[J]. Geophysical Monograph Series, 2006, 164: 149-175. |
[9] | RAPP R P, WATSON E B, MILLER C F. Partial melting of amphibolite/eclogite and the origin of archean trondhjemites and tonalities[J]. Precambrian Research, 1991, 51(1/2/3/4): 1-25. |
[10] | 魏春景, 关晓, 董杰. 基性岩高温-超高温变质作用与TTG质岩成因[J]. 岩石学报, 2017, 33(5): 1381-1404. |
[11] | KAY R W. Aleutian magnesian andesite: melts from subducted Pacific Ocean crust[J]. Journal of Volcanology and Geothermal Research, 1978, 4(1/2): 117-132. |
[12] | DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. |
[13] | PEACOCK S M, RUSHMER T, THOMPSON A B. Partial melting of subducting oceanic crust[J]. Earth and Planetary Science Letters, 1994, 121(1/2): 227-244. |
[14] | MARTIN H, SMITHIES R H, RAPP R, et al. An overview of adakite, tonalite- trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24. |
[15] | ROLLINSON H R, MARTIN H. Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation: introduction to the special issue[J]. Lithos, 2005, 79(1/2): ix-xii. |
[16] | GILL R. Igneous rocks and processes: a practical guide[M]. Chichester, UK: Wiley- Blackwell, 2010. |
[17] | MOYEN J F, MARTIN H. Forty years of TTG research[J]. Lithos, 2012, 148(Complete): 312-336. |
[18] | 吴鸣谦, 左梦璐, 张德会, 等. TTG岩套的成因及其形成环境[J]. 地质论评, 2014, 60(3): 503-514. |
[19] | WEI C J, DUAN Z Z. Phase relations in metabasic rocks: constraints from the results of experiments, phase modelling and ACF analysis[J]. Geological Society, London, Special Publications, 2018, 474(1): SP474. 10. |
[20] | WYLLIE P J, WOLF M B. Amphibole dehydration-melting: sorting out the solidus[J]. Geological Society, London, Special Publications, 1993, 76(1): 405-416. |
[21] | SEN C, DUNN T. Dehydration melting of a basaltic composition amphibolite at 1. 5 and 2. 0 GPa: implications for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 1994, 117(4): 394-409. |
[22] | 张旗, 焦守涛. 埃达克岩来自高压背景: 一个科学的、 可靠的、 有预见性的科学发现[J]. 岩石学报, 2020, 36(6): 1675-1683. |
[23] | WYLLIE P J. Subduction products according to experimental prediction[J]. Geological Society of America Bulletin, 1982, 93(6): 468-476. |
[24] | RAPP R P, WATSON E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. |
[25] | LIU J, BOHLEN S R, ERNST W G. Stability of hydrous phases in subducting oceanic crust[J]. Earth and Planetary Science Letters, 1996, 143(1): 161-171. |
[26] | VIELZEUF D, VIDAL P. Granulites and crustal evolution[M]. Dordrecht, Boston. London: Kluwer Academic Publishers, 1990. |
[27] | 魏春景. 麻粒岩相变质作用与花岗岩成因-Ⅱ: 变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟[J]. 岩石学报, 2016, 32(6): 1625-43. |
[28] | 魏春景, 朱文萍. 麻粒岩相变质作用与花岗岩成因-Ⅰ: 变质泥质岩/杂砂岩高温-超高温变质相平衡[J]. 岩石学报, 2016, 32(6): 1611-24. |
[29] | HARLEY S L. The origins of granulites: a metamorphic prospective[J]. Geological Magazine, 1989, 126(3): 215-247. |
[30] | ATHERTON M P, PETFORD N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362: 144-146. |
[31] | DAVIDSON J P. Petrogenesis of Lesser Antilles island arc magmas: isotopic and geochemical constraints[D]. University of Leeds, UK: Unpubl. PhD thesis, 1984. |
[32] | NUTMAN A P, BENNETT V C, FRIEND C R L, et al. Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation[J]. Contributions to Mineralogy and Petrology, 1999, 137(4): 364-388. |
[33] | SUN S S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs[J]. London, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1980, 297(1431): 409-445. |
[34] | THOMPSON R N, MORRISON M A, HENDRY G L, et al. An assessment of the relative roles of a crust and mantle in magma genesis: an elemental approach[J]. London, Philosophical Transactions of the Royal Society A, 1984, A310: 549-590. |
[35] | BRYANT J A, YOGODZINSKI G M, HALL M L, et al. Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador[J]. Journal of Petrology, 2004, 47(6): 1147-1175. |
[36] | MACPHERSON C G, DREHER S T, THIRLWALL M F. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 581-593. |
[37] | SMITHIES R H. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 2000, 182(1): 115-125. |
[38] | 南京大学地质系矿物岩石教研室. 火成岩岩石学[M]. 北京: 地质出版社, 1980. |
[39] | 许继峰, 邬建斌, 王强, 等. 埃达克岩与埃达克质岩在中国的研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 6-13. |
[40] | ARTH J G, HANSON G N. Geochemistry and origin of the early Precambrian crust of northeastern Minnesota[J]. Geochimica et Cosmochimica Acta, 1975, 39(3): 325-362. |
[41] | CONDIE K C, HUNTER D R. Trace element geochemistry of Archean granitic rocks from the Barberton region, South Africa[J]. Earth and Planetary Science Letters, 1976, 29(2): 389-400. |
[42] | CONDIE K C. Archean greenstone belts[J]. Developments in Precambrian Geology, 1981, 3: 434. |
[43] | JAHN B, GLIKSON A Y, PEUCAT J J, et al. REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara block, Western Australia: implications for early crustal evolution[J]. Geochimica et Cosmochimica Acta, 1981, 45(9): 1633-1652. |
[44] | JAHN B M, VIDAL P, KRÖNER K A. Multi-chronometric ages and origin of Archaean tonalitic gneisses in Finnish Lapland: a case for long crustal residence time[J]. Contributions to Mineralogy and Petrology, 1984, 86: 398-408. |
[45] | MARTIN H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas[J]. Geology, 1986, 14(9): 753-756. |
[46] | MARTIN H. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry[J]. Journal of Petrology, 1987, 28(5): 921-953. |
[47] | ELLAM R M, HAWKESWORTH C J. Is average continental crust generated at subduction zones?[J]. Geology, 1988, 16(4): 314-317. |
[48] | MARTIN H. The mechanisms of petrogenesis of the Archaean continental crust: comparison with modern processes[J]. Lithos, 1993, 30(3/4): 373-388. |
[49] | 张旗, 原杰, 焦守涛, 等. 花岗岩三级分类刍议[J/OL]. 矿物岩石地球化学通报, [2022-06-13]. https://doi.org/10.19658/j.issn.1007-2802.2022.41.020. |
[1] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[2] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[3] | ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review [J]. Earth Science Frontiers, 2022, 29(3): 37-50. |
[4] | CAO Daiyong, LIU Zhifei, WANG Anmin, WANG Lu, DING Zhengyun, LI Yang. Control of coal metamorphism by tectonic physicochemical conditions [J]. Earth Science Frontiers, 2022, 29(1): 439-448. |
[5] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[6] | ZHOU Yongzhang, ZHANG Qianlong, HUANG Yongjian, YANG Wei, XIAO Fan, JI Junjie, HAN Feng, TANG Lei, OUYANG Chong, SHEN Wenjie. Constructing knowledge graph for the porphyry copper deposit in the Qingzhou-Hangzhou Bay area: Insight into knowledge graph based mineral resource prediction and evaluation [J]. Earth Science Frontiers, 2021, 28(3): 67-75. |
[7] | LI Shengrong, SHEN Junfeng, LI Lin, ZHANG Huafeng. Considerations on big data-based genetic mineralogical research [J]. Earth Science Frontiers, 2021, 28(3): 76-86. |
[8] | HONG Shuang, ZUO Renguang, HU Hao, XIONG Yihui, WANG Ziye. Magnetite geochemical big data: Dataset construction and application in genetic classification of ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 87-96. |
[9] | WANG Gongwen, ZHANG Shouting, YAN Changhai, PANG Zhenshan, WANG Hongwei, FENG Zhankui, DONG Hong, CHENG Hongtao, HE Yaqing, LI Ruixi, ZHANG Zhiqiang, HUANG Leilei, GUO Nana. Resource-environmental joint forecasting in the Luanchuan mining district, China through big data mining and 3D/4D modeling [J]. Earth Science Frontiers, 2021, 28(3): 139-155. |
[10] | XI Xiaohuan. Big data science from informationization to modelling to intelligentization: New paradigm of applied geochemical research [J]. Earth Science Frontiers, 2021, 28(1): 308-317. |
[11] | CUI Xiaoliang,SU Shangguo,SONG Chen,JIANG Junyi,HEI Huixin,WU Yue. Origin and source of the Hannuoba alkaline basalts [J]. Earth Science Frontiers, 2019, 26(6): 257-270. |
[12] | ZHAO Pengda. Characteristics and rational utilization of geological big data [J]. Earth Science Frontiers, 2019, 26(4): 1-5. |
[13] | LUO Jianmin,ZHANG Qi. Big data pioneers new ways of geoscience research: identifying relevant relationships to enhance research feasibility [J]. Earth Science Frontiers, 2019, 26(4): 6-12. |
[14] | YUAN Fanglin,ZHANG Qi2,ZHANG Chengli. Characteristics of the temporal-spatial distribution of global Cenozoic picrite and their significance [J]. Earth Science Frontiers, 2019, 26(4): 13-21. |
[15] | GE Can,WANG Fangyue,GU Hai'ou,GUAN Huaifeng,LI Xiuyu,YUAN Feng. Tectonic discrimination based on convolution neural network and big data of volcanic rocks [J]. Earth Science Frontiers, 2019, 26(4): 22-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||