Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (2): 180-197.DOI: 10.13745/j.esf.sf.2021.7.16
Previous Articles Next Articles
ZHANG Liang1,2(), ZHANG Heng2,*(
), GONG Chengqiang1,2, DING Xiaozhong2, ZHANG Chuanheng1, LIU Yong2, GAO Linzhi2, LIU Yanxue2
Received:
2021-08-15
Revised:
2021-11-25
Online:
2022-03-25
Published:
2022-03-31
Contact:
ZHANG Heng
CLC Number:
ZHANG Liang, ZHANG Heng, GONG Chengqiang, DING Xiaozhong, ZHANG Chuanheng, LIU Yong, GAO Linzhi, LIU Yanxue. Geological characteristics and tectonic background of the Mesoproterozoic ophiolite mélange in central and southern Yunnan[J]. Earth Science Frontiers, 2022, 29(2): 180-197.
Fig.5 U-Pb concordia diagrams of gabbro (sample 20171219-2), ignimbrite (20180526-1), granitic conglomerate (20181201-2), plagiogranite (20181201-25) and granite porphyry (20190411-13) samples from the Cuoke ophiolitic mélange
测试点 | 同位素比值 | 年龄/Ma | εHf(0) | εHf(t) | tDM | | |||
---|---|---|---|---|---|---|---|---|---|
176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | ||||||
20180526-1 | |||||||||
1.1 | 0.065 441 | 0.002 139 | 0.281 904 | 0.000 007 | 1 177 | -30.7 | -6.3 | 1 954 | 2 403 |
2.1 | 0.127 639 | 0.003 335 | 0.281 877 | 0.000 010 | 1 153 | -31.6 | -8.7 | 2 059 | 2 534 |
3.1 | 0.036 120 | 0.001 287 | 0.281 896 | 0.000 008 | 1 153 | -31.0 | -6.5 | 1 921 | 2 392 |
4.1 | 0.039 772 | 0.001 153 | 0.281 907 | 0.000 009 | 1 179 | -30.6 | -5.4 | 1 899 | 2 346 |
5.1 | 0.054 308 | 0.002 218 | 0.281 470 | 0.000 008 | 1 872 | -46.1 | -7.2 | 2 575 | 2 994 |
6.1 | 0.018 690 | 0.000 610 | 0.281 860 | 0.000 008 | 1 154 | -32.3 | -7.2 | 1 937 | 2 441 |
7.1 | 0.040 058 | 0.001 190 | 0.281 881 | 0.000 009 | 1 180 | -31.5 | -6.3 | 1 937 | 2 405 |
8.1 | 0.035 199 | 0.001 057 | 0.281 879 | 0.000 008 | 1 163 | -31.6 | -6.7 | 1 934 | 2 415 |
9.1 | 0.098 364 | 0.003 063 | 0.281 930 | 0.000 009 | 1 173 | -29.8 | -6.2 | 1 966 | 2 392 |
10.1 | 0.030 439 | 0.000 886 | 0.281 891 | 0.000 009 | 1 164 | -31.1 | -6.1 | 1 908 | 2 377 |
11.1 | 0.025 548 | 0.000 753 | 0.281 872 | 0.000 009 | 1 174 | -31.8 | -6.4 | 1 927 | 2 407 |
12.1 | 0.032 932 | 0.000 995 | 0.281 927 | 0.000 009 | 1 174 | -29.9 | -4.7 | 1 863 | 2 296 |
13.1 | 0.045 143 | 0.001 453 | 0.281 907 | 0.000 009 | 1 174 | -30.6 | -5.8 | 1 915 | 2 365 |
14.1 | 0.042 998 | 0.001 323 | 0.281 890 | 0.000 010 | 1 173 | -31.2 | -6.3 | 1 932 | 2 397 |
14.1 | 0.042 998 | 0.001 323 | 0.281 890 | 0.000 010 | 1 173 | -31.2 | -6.3 | 1 932 | 2 397 |
15.1 | 0.044 616 | 0.001 372 | 0.281 885 | 0.000 009 | 1 153 | -31.4 | -6.9 | 1 942 | 2 422 |
16.1 | 0.045 183 | 0.001 349 | 0.281 869 | 0.000 009 | 1 169 | -31.9 | -7.1 | 1 962 | 2 446 |
17.1 | 0.027 815 | 0.000 841 | 0.281 874 | 0.000 008 | 1 118 | -31.8 | -7.7 | 1 930 | 2 442 |
18.1 | 0.038 412 | 0.001 246 | 0.281 865 | 0.000 008 | 1 159 | -32.1 | -7.4 | 1 963 | 2 457 |
Table 3 Results of Hf isotopic analysis of zircon from ignimbrite sample 20180526-1 from the Cuoke Area
测试点 | 同位素比值 | 年龄/Ma | εHf(0) | εHf(t) | tDM | | |||
---|---|---|---|---|---|---|---|---|---|
176Yb/177Hf | 176Lu/177Hf | 176Hf/177Hf | 2σ | ||||||
20180526-1 | |||||||||
1.1 | 0.065 441 | 0.002 139 | 0.281 904 | 0.000 007 | 1 177 | -30.7 | -6.3 | 1 954 | 2 403 |
2.1 | 0.127 639 | 0.003 335 | 0.281 877 | 0.000 010 | 1 153 | -31.6 | -8.7 | 2 059 | 2 534 |
3.1 | 0.036 120 | 0.001 287 | 0.281 896 | 0.000 008 | 1 153 | -31.0 | -6.5 | 1 921 | 2 392 |
4.1 | 0.039 772 | 0.001 153 | 0.281 907 | 0.000 009 | 1 179 | -30.6 | -5.4 | 1 899 | 2 346 |
5.1 | 0.054 308 | 0.002 218 | 0.281 470 | 0.000 008 | 1 872 | -46.1 | -7.2 | 2 575 | 2 994 |
6.1 | 0.018 690 | 0.000 610 | 0.281 860 | 0.000 008 | 1 154 | -32.3 | -7.2 | 1 937 | 2 441 |
7.1 | 0.040 058 | 0.001 190 | 0.281 881 | 0.000 009 | 1 180 | -31.5 | -6.3 | 1 937 | 2 405 |
8.1 | 0.035 199 | 0.001 057 | 0.281 879 | 0.000 008 | 1 163 | -31.6 | -6.7 | 1 934 | 2 415 |
9.1 | 0.098 364 | 0.003 063 | 0.281 930 | 0.000 009 | 1 173 | -29.8 | -6.2 | 1 966 | 2 392 |
10.1 | 0.030 439 | 0.000 886 | 0.281 891 | 0.000 009 | 1 164 | -31.1 | -6.1 | 1 908 | 2 377 |
11.1 | 0.025 548 | 0.000 753 | 0.281 872 | 0.000 009 | 1 174 | -31.8 | -6.4 | 1 927 | 2 407 |
12.1 | 0.032 932 | 0.000 995 | 0.281 927 | 0.000 009 | 1 174 | -29.9 | -4.7 | 1 863 | 2 296 |
13.1 | 0.045 143 | 0.001 453 | 0.281 907 | 0.000 009 | 1 174 | -30.6 | -5.8 | 1 915 | 2 365 |
14.1 | 0.042 998 | 0.001 323 | 0.281 890 | 0.000 010 | 1 173 | -31.2 | -6.3 | 1 932 | 2 397 |
14.1 | 0.042 998 | 0.001 323 | 0.281 890 | 0.000 010 | 1 173 | -31.2 | -6.3 | 1 932 | 2 397 |
15.1 | 0.044 616 | 0.001 372 | 0.281 885 | 0.000 009 | 1 153 | -31.4 | -6.9 | 1 942 | 2 422 |
16.1 | 0.045 183 | 0.001 349 | 0.281 869 | 0.000 009 | 1 169 | -31.9 | -7.1 | 1 962 | 2 446 |
17.1 | 0.027 815 | 0.000 841 | 0.281 874 | 0.000 008 | 1 118 | -31.8 | -7.7 | 1 930 | 2 442 |
18.1 | 0.038 412 | 0.001 246 | 0.281 865 | 0.000 008 | 1 159 | -32.1 | -7.4 | 1 963 | 2 457 |
[1] |
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synjournal[J]. Precambrian Research, 2008, 160(1/2):179-210.
DOI URL |
[2] |
CAWOOD P A, WANG Y J, XU Y J, et al. Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere?[J]. Geology, 2013, 41(8):903-906.
DOI URL |
[3] |
CAWOOD P A, ZHAO G C, YAO J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186:173-194.
DOI URL |
[4] |
YIN C Q, LIN S F, DAVIS D W, et al. 2.1-1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia[J]. Lithos, 2013, 182/183:200-210.
DOI URL |
[5] | 戴恒贵. 康滇地区昆阳群和会理群地层、构造及找矿靶区研究[J]. 云南地质, 1997, 16(1):1-39. |
[6] | 吕世琨, 戴恒贵. 康滇地区建立昆阳群(会理群)层序的回顾和重要赋矿层位的发现[J]. 云南地质, 2001, 20(1):1-24. |
[7] | 曹德斌. 青龙厂幅F48E002001 1/5万地质图说明书[R]. 昆明: 云南省地质矿产勘查开发局, 1995. |
[8] | 杨红, 刘福来, 杜利林, 等. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义[J]. 岩石学报, 2012, 28(9):2994-3014. |
[9] | 任光明, 庞维华, 王立全, 等. 扬子陆块西南缘3.8 Ga碎屑锆石及其地质意义[J]. 地球科学, 2020, 45(8):14. |
[10] | 尹福光, 孙志明, 任光明, 等. 上扬子陆块西南缘早—中元古代造山运动的地质记录[J]. 地质学报, 2012, 86(12):1917-1932. |
[11] | 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48(增刊):26-30. |
[12] | LUDWIG K R. Squid 1.02: a user’s manual[M]. Berkeley: Berkeley Geochronology Center, 2002. |
[13] |
STACEY J S, KRAMERS J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2):207-221.
DOI URL |
[14] |
LE BAS N J, LE MAITRE R W, STRECKEISEN A, et al. A chemical classification of volcanic rocks based on the alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3):745-750.
DOI URL |
[15] |
PECCERILLO A, TAYLOR S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81.
DOI URL |
[16] |
WINCHESTER J A, FLOYD P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343.
DOI URL |
[17] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
DOI URL |
[18] |
MCCULLOCH M T, GAMBLE J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102(3/4):358-374
DOI URL |
[19] |
WATSON S. Rare earth element inversions and percolation models for Hawaii[J]. Journal of Petrology, 1993, 34:763-783
DOI URL |
[20] |
PEARCE J A, NORRY M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979. 69(1):33-47
DOI URL |
[21] |
PEARCE J A, CANN J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300.
DOI URL |
[22] |
WOOD D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1):11-30.
DOI URL |
[23] | 张恒, 高林志, 张传恒, 等. 扬子板块西南部古元古代岩浆及变质事件:兼论扬子板块对Nuna超大陆事件的响应[J]. 地质通报, 2019, 38(11):1777-1789. |
[24] |
GREENTREE M R, LI Z X, LI X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151(1/2):79-100.
DOI URL |
[25] | 耿元生, 杨崇辉, 杜利林, 等. 天宝山组形成时代和形成环境:锆石SHRIMP U-Pb年龄和地球化学证据[J]. 地质论评, 2007, 53(4):556-563. |
[26] | 耿元生, 旷红伟, 柳永清, 等. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报, 2017, 91(10):2151-2174. |
[27] | 尹福光, 孙志明, 白建科. 东川、滇中地区中元古代地层格架[J]. 地层学杂志, 2011, 35(1):49-54. |
[28] |
ZHU W G, ZHONG H, LI Z X, et al. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance[J]. Precambrian Research, 2016, 273:67-89.
DOI URL |
[29] | 张传恒, 高林志, 武振杰, 等. 滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄:华南格林威尔期造山的证据[J]. 科学通报, 2007, 52(7):818-824. |
[30] | 李怀坤, 张传林, 姚春彦, 等. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成[J]. 中国科学: 地球科学, 2013, 43(8):1287-1298. |
[31] | 刘军平, 曾文涛, 徐云飞, 等. 滇中峨山地区中元古界昆阳群黑山头组火山岩锆石U-Pb年龄及其地质意义[J]. 地质通报, 2018, 37(11):2063-2070. |
[32] | 刘昊岗, 张恒, 张传恒, 等. 滇中北部昆阳群凝灰岩SHRIMP锆石U-Pb年龄及其地层学意义[J]. 地质通报, 2019, 38(7):1183-1190. |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[3] | ZHANG Jiawen, LI Mingchao, HAN Shuai, ZHANG Jingyi. Analysis and discrimination of tectonic settings based on stacking quantum neural networks [J]. Earth Science Frontiers, 2024, 31(3): 511-519. |
[4] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[5] | ZHOU Yuxi, SHI Yu, HUANG Chunwen, LIU Xijun, LAN Yuanchun, TANG Yuanyuan, WENG Boyin. Petrogenesis and tectonic significance of Caledonian I-Type granitoids in the Gulong and Liandong plutons in southeastern Guangxi [J]. Earth Science Frontiers, 2024, 31(2): 224-248. |
[6] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
[7] | HE Yanbing, LEI Yongchang, QIU Xinwei, XIAO Zhangbo, ZHENG Yangdi, LIU Dongqing. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2024, 31(2): 359-376. |
[8] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[9] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[10] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[11] | HUANG Xiaoqiang, LIU Qingqi, LI Peng, LIU Xiang, ZENG Le, ZHANG Liping, SHI Weike, HUANG Zhibiao, FAN Pengfei, WAN Haihui, LIN Yue, WANG Xuanmin, CAI Chang. Pegmatites of Shangfu deposits, Lianyunshan, northeastern Hunan: Geochemical characteristics, fluid inclusions, and genetic constraints [J]. Earth Science Frontiers, 2023, 30(5): 298-313. |
[12] | WANG Tao, LI Jiqing, HAN Jie, WANG Taishan, LI Yulong, YUAN Bowu. Geochemistry, geochronology and Hf isotopic characteristics of rare earth-bearing quartz syenite in eastern Dashuigou, East Kunlun [J]. Earth Science Frontiers, 2023, 30(4): 283-298. |
[13] | LUO Niangang, GAO Lianfeng, ZHANG Zhenguo, YIN Zhigang, CUI Jianyu, WU Junfei, XING Jie, DING Kai, GAO Chenyang, WANG Yue. Processes and mechanism of lithospheric thinning in the eastern North China Craton during the Early Cretaceous: Evidence from the Beidashan pluton, Liaoning Province [J]. Earth Science Frontiers, 2023, 30(3): 340-365. |
[14] | ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance [J]. Earth Science Frontiers, 2023, 30(2): 163-182. |
[15] | WANG Lulin, LIU Xiaohong, ZHANG Zhiguang. Discovery of volcanic rocks in the Pingchau Formation in Tungpingchau, Hong Kong UNESCO Global Geopark: Zircon U-Pb geochronology, geochemistry and geological implications [J]. Earth Science Frontiers, 2023, 30(2): 239-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||