Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (6): 67-78.DOI: 10.13745/j.esf.sf.2020.6.3
Previous Articles Next Articles
HAN Jian1(), GUO Junfeng2, OU Qiang3, SONG Zuchen2, LIU Ping1, HAO Wenjing1, SUN Jie1, WANG Xing4
Received:
2020-03-27
Revised:
2020-05-26
Online:
2020-11-02
Published:
2020-11-02
CLC Number:
HAN Jian, GUO Junfeng, OU Qiang, SONG Zuchen, LIU Ping, HAO Wenjing, SUN Jie, WANG Xing. Evolutionary framework of early Cambrian cnidarians from South China[J]. Earth Science Frontiers, 2020, 27(6): 67-78.
[1] |
ERWIN D H, LAFLAMME M, TWEEDT S M, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334(6059): 1091-1097.
DOI URL |
[2] |
ZHURAVLEV A Y, WOOD R A. The two phases of the Cambrian Explosion[J]. Scientific Reports, 2018, 8(1): 16656.
DOI URL |
[3] |
SHU D. Cambrian explosion: birth of tree of animals[J]. Gondwana Research, 2008, 14(1/2): 219-240.
DOI URL |
[4] |
SHU D G, ISOZAKI Y, ZHANG X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895.
DOI URL |
[5] | 朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究: 进展与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1455-1490. |
[6] | PATERSON J R, EDGECOMBE G D, LEE M S Y. Trilobite evolutionary rates constrain the duration of the Cambrian explosion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4394-4399. |
[7] |
BOBROVSKIY I, HOPE J M, IVANTSOV A, et al. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals[J]. Science, 2018, 361(6408): 1246-1249.
DOI URL |
[8] |
CHEN Z, ZHOU C M, XIAO S H, et al. New Ediacara fossils preserved in marine limestone and their ecological implications[J]. Scientific Reports, 2015, 4: 4180.
DOI URL |
[9] | CHEN Z, CHEN X, ZHOU C M, et al. Late Ediacaran trackways produced bybilaterian animals with paired appendages[J]. Science Advances, 2018, 4(6): eaao6691. |
[10] |
IVANTSOV A, NAGOVITSYN A, ZAKREVSKAYA M. Traces of locomotion of Ediacaranmacroorganisms[J]. Geosciences, 2019, 9(9): 395.
DOI URL |
[11] |
EVANS S D, GEHLING J G, DROSER M L. Slime travelers: early evidence of animal mobility and feeding in an organic matworld[J]. Geobiology, 2019, 17(5): 490-509.
DOI URL |
[12] | YIN Z J, ZHU M Y, DAVIDSON E H, et al. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1453-E1460. |
[13] | YIN Z J, VARGAS K, CUNNINGHAM J, et al. The early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology[J]. Current Biology, 2019, 29(24): 4307- 4314.e2. |
[14] |
ZHANG X L, SHU D G, HAN J, et al. Triggers for the Cambrian explosion: hypotheses andproblems[J]. Gondwana Research, 2014, 25(3): 896-909.
DOI URL |
[15] |
LI G X, STEINER M, ZHU X J, et al. Early Cambrian metazoan fossil record of South China: generic diversity and radiationpatterns[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 229-249.
DOI URL |
[16] |
KAYAL E, BENTLAGE B, SABRINA PANKEY M, et al. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits[J]. BMC Evolutionary Biology, 2018, 18(1): 68.
DOI URL |
[17] |
PARK E, HWANG D S, LEE J S, et al. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record[J]. Molecular Phylogenetics and Evolution, 2012, 62(1): 329-345.
DOI URL |
[18] |
STEINER M, LI G X, QIAN Y, et al. Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance[J]. Geobios, 2004, 37(2): 259-275.
DOI URL |
[19] | DONG X P, CUNNINGHAM J A, BENGTSON S, et al. Embryos, polyps andmedusae of the early Cambrian scyphozoan Olivooides[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1757): 20130071. |
[20] |
DONG X P, VARGAS K, CUNNINGHAM J A, et al. Developmental biology of the early Cambrian cnidarian Olivooides[J]. Palaeontology, 2016, 59(3): 387-407.
DOI URL |
[21] |
LIU Y H, SHAO T Q, ZHANG H Q, et al. A new scyphozoan from the Cambrian Fortunian Stage of South China[J]. Palaeontology, 2017, 60(4): 511-518.
DOI URL |
[22] | HAN J, KUBOTA S, LI G X, et al. Early Cambrian pentamerous cubozoan embryos from South China[J]. PLoS One, 2013, 8(8): e70741. |
[23] |
DZIK J, BALI SKI A, SUN Y L. The origin of tetraradial symmetry in cnidarians[J]. Lethaia, 2017, 50(2): 306-321.
DOI URL |
[24] | HAN J, LI G X, SHIN K, et al. Internal microanatomy and zoological affinity of the Early Cambrian Olivooides[J]. Acta Geologica Sinica(English Edition), 2016, 90(1): 38-65. |
[25] |
HAN J, KUBOTA S, LI G X, et al. Divergent evolution of medusozoan symmetric patterns: evidence from the microanatomy of Cambrian tetramerous cubozoans from South China[J]. Gondwana Research, 2016, 31: 150-163.
DOI URL |
[26] |
WANG X, HAN J, VANNIER J, et al. Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China[J]. Palaeontology, 2017, 60(6): 853-867.
DOI URL |
[27] |
XIAN X F, ZHANG H Q, LIU Y H, et al. Diverse radial symmetry among the Cambrian Fortunian fossil embryos from northern Sichuan and southern Shaanxi Provinces, South China[J]. Palaeoworld, 2019, 28(3): 225-233.
DOI URL |
[28] |
HAN J, LI G X, WANG X, et al. Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria)[J]. Journal of Paleontology, 2018, 92(1): 3-13.
DOI URL |
[29] | HAN J, KUBOTA S, UCHIDA H O, et al. Tiny sea anemone from the Lower Cambrian of China[J]. PLoS One, 2010, 5(10): e13276. |
[30] |
BERRILL N J. Developmental Analysis of scyphomedusae[J]. Biological Reviews, 1949, 24(4): 393-409.
PMID |
[31] |
BENGTSON S, ZHAO Y. Fossilized metazoan embryos from the earliest Cambrian[J]. Science, 1997, 277(5332): 1645-1648.
DOI URL |
[32] | DUAN B C, DONG X P, PORRAS L, et al. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1869): 20172188. |
[33] |
HAN J, CAI Y P, SCHIFFBAUER J D, et al. A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China[J]. Geological Magazine, 2017, 154(6): 1294-1305.
DOI URL |
[34] |
CAI Y P, XIAO S H, LI G X, et al. Diverse biomineralizing animals in the terminal Ediacaran period herald the Cambrian explosion[J]. Geology, 2019, 47(4): 380-384.
DOI URL |
[35] |
YANG B, STEINER M, ZHU M Y, et al. Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution[J]. Precambrian Research, 2016, 285: 202-215.
DOI URL |
[36] |
ZHU M, ZHURAVLEV A Y, WOOD R A, et al. A deep root for the Cambrian explosion: implications of new bio-and chemostratigraphy from the Siberian Platform[J]. Geology, 2017, 45(5): 459-462.
DOI URL |
[37] |
GUO J F, LI Y, LI G X. Small shelly fossils from the early Cambrian Yanjiahe Formation, Yichang, Hubei, China[J]. Gondwana Research, 2014, 25(3): 999-1007.
DOI URL |
[38] |
GUO J F, HAN J, ITEN H V, et al. A fourteen-faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(1): 45-55.
DOI URL |
[39] |
GUO J F, HAN J, VAN ITEN H, et al. A new tetraradial olivooid (Medusozoa) from the Lower Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(3): 457-466.
DOI URL |
[40] |
LI G X, ZHU M Y, VAN ITEN H, et al. Occurrence of the earliest known Sphenothallus Hall in the Lower Cambrian of southern Shaanxi Province, China[J]. Geobios, 2004, 37(2): 229-237.
DOI URL |
[41] |
CHANG S, CLAUSEN S, ZHANG L, et al. New probable cnidarian fossils from the Lower Cambrian of the Three Gorges area, South China, and their ecological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 150-166.
DOI URL |
[42] |
HOU X G, STANLEY G D, ZHAO J, et al. Cambrian anemones with preserved soft tissue from the Chengjiang biota, China[J]. Lethaia, 2005, 38(3): 193-203.
DOI URL |
[43] | CHEN J Y, ERDTMANN B D. Lower Cambrian fossil Lagerstätte from Chengjiang, Yunnan, China: insights for reconstructing early metazoan life[C]//SIMONETTA A M, MORRIS S C. The early evolution of metazoa and the significance of problematic taxa. Cambridge: Cambridge University Press, 1991: 57-76. |
[44] | OU Q, HAN J, ZHANG Z F, et al. Three Cambrian fossils assembled into an extinct body plan of cnidarianaffinity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 8835-8840. |
[45] | ZHAO Y, VINTHER J, PARRY L A, et al. Cambrian sessile, suspension feeding stem-group ctenophores and evolution of the comb jelly bodyplan[J]. Current Biology, 2019, 29(7): 1112-1125.e2. |
[46] | 欧强. 早期动物树部分关键支系及节点的构建[D]. 北京: 中国地质大学(北京), 2012. |
[47] |
HAN J, HU S X, CARTWRIGHT P, et al. The earliest pelagic jellyfish with rhopalia from Cambrian Chengjiang Lagerstätte[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 166-173.
DOI URL |
[48] | Hou X G, Adridge R J, Bergström J, et al. The Cambrian fossils of Chengjiang, China: the flowering of early animal life (Second Edition)[M]. Oxford: Blackwell Science, 2017. |
[49] |
HICKS M. A new genus of Early Cambrian coral in Esmeralda County, southwestern Nevada[J]. Journal of Paleontology, 2006, 80(4): 609-615.
DOI URL |
[50] |
PEEL J S. A problematic cnidarian (Cambroctoconus; Octocorallia?) from the Cambrian (Series 2-3) of Laurentia[J]. Journal of Paleontology, 2017, 91(5): 871-882.
DOI URL |
[51] |
PARK TY, WOO J, LEE D J, et al. A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution[J]. Nature Communications, 2011, 2: 442.
DOI URL |
[52] |
SCRUTTON C T. The Palaeozoic corals, I: origins and relationships[J]. Proceedings of the Yorkshire Geological Society, 1997, 51(3): 177-208.
DOI URL |
[53] |
SCRUTTON C. Palaeozoic corals: their evolution and palaeoecology[J]. Geology Today, 1999, 15(5): 184-193.
DOI URL |
[54] |
DRAKE J L, MASS T, STOLARSKI J, et al. How corals made rocks through the ages[J]. Global Change Biology, 2020, 26(1): 31-53.
DOI URL |
[55] |
STANLEY G D. The evolution of modern corals and their early history[J]. Earth-Science Reviews, 2003, 60(3/4): 195-225.
DOI URL |
[56] | NOVACK-GOTTSHALL P M, LANIER M A. Scale-dependence of Cope’s rule in body size evolution of Paleozoic brachiopods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(14): 5430-5434. |
[57] |
WILLIAMS M, VANNIER J, CORBARI L, et al. Oxygen as a driver of early arthropod micro-benthos evolution[J]. PLoS One, 2011, 6(12): e28183.
DOI URL |
[58] |
HONE D, BENTON M. The evolution of large size: how does Cope’s Rule work?[J]. Trends in Ecology & Evolution, 2005, 20(1): 4-6.
DOI URL |
[59] | PAYNE J L, MCCLAIN C R, BOYER A G, et al. The evolutionary consequences of oxygenic photosynjournal: a body size perspective[J]. Photosynjournal Research, 2011, 107(1): 37-57. |
[60] | GAD G. A parthenogenetic, simplified adult in the life cycle of Pliciloricus pedicularis sp. n.(Loricifera) from the deep sea of the Angola Basin (Atlantic)[J]. Organisms Diversity & Evolution, 2005, 5: 77-103. |
[61] |
BOADEN P J S. Meiofauna and the origins of the metazoa[J]. Zoological Journal of the Linnean Society, 1989, 96(3): 217-227.
DOI URL |
[62] |
STRATHMANN RR. Egg size, larval development, and juvenile size in benthic marine invertebrates[J]. The American Naturalist, 1977, 111(978): 373-376.
DOI URL |
[63] |
CARON J B, VANNIER J. Waptia and the diversification of brood care in early arthropods[J]. Current Biology, 2016, 26(1): 69-74.
DOI URL |
[64] |
DUAN Y H, HAN J, FU D J, et al. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China[J]. Gondwana Research, 2014, 25(3): 983-990.
DOI URL |
[65] | OU Q, VANNIER J, YANG X F, et al. Evolutionary trade-off in reproduction of Cambrian arthropods[J]. Science Advances, 2020, 6(18): eaaz3376. |
[66] |
KAYAL E, ROURE B, PHILIPPE H, et al. Cnidarian phylogenetic relationships as revealed by mitogenomics[J]. BMC Evolutionary Biology, 2009, 13(1): 5.
DOI URL |
[67] |
COLLINS A G, SCHUCHERT P, MARQUES A C, et al. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models[J]. Systematic Biology, 2006, 55(1): 97-115.
DOI URL |
[68] |
MARQUES A C, COLLINS A G. Cladistic analysis of Medusozoa and cnidarianevolution[J]. Invertebrate Biology, 2005, 123(1): 23-42.
DOI URL |
[69] |
VAN ITEN H, MARQUES A C, DE MORAES LEME J, et al. Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history[J]. Palaeontology, 2014, 57(4): 677-690.
DOI URL |
[70] |
COLLINS A G. Phylogeny of Medusozoa and the evolution of cnidarian lifecycles[J]. Journal of Evolutionary Biology, 2002, 15(3): 418-432.
DOI URL |
[71] | KHALTURIN K, SHINZATO C, KHALTURINA M, et al. Medusozoan genomes inform the evolution of the jellyfish bodyplan[J]. Nature Ecology & Evolution, 2019, 3(5): 811-822. |
[72] | ARAI M N. A functional biology of Scyphozoa[M]. London: Chapman & Hall, 1997: 316. |
[73] | VAN ITEN H, LEME J M PACHECO M L A F, et al. Origin and early diversification of phylum Cnidaria: key macrofossils from the Ediacaran System of North and South America[M]//GOFFREDO S, DUBINSKY Z.The Cnidaria, past, present and future. Cham: Springer International Publishing, 2016: 31-40. |
[74] |
JARMS G, MORANDINI A, DA SILVEIRA F. Cultivation of polyps andmedusae of Coronatae (Cnidaria, Scyphozoa) with a brief review of important characters[J]. Helgoland Marine Research, 2002, 56(3): 203-210.
DOI URL |
[75] |
WERNER B, CUTRESS C E, STUDEBAKER J P. Life cycle of Tripedalia cystophora Conant (Cubomedusae)[J]. Nature, 1971, 232(5312): 582-583.
DOI URL |
[76] |
UNDERWOODA H, STRAEHLER-POHL I, CARRETTE T J, et al. Early life history and metamorphosis in Malo maxima Gershwin, 2005 (Carukiidae, Cubozoa, Cnidaria)[J]. Plankton and Benthos Research, 2018, 13(4): 143-153.
DOI URL |
[77] | STRAEHLER-POHL I, JARMS G. Morphology and life cycle of Carybdea morandinii, sp. nov.(Cnidaria), a cubozoan with zooxanthellae and peculiar polyp anatomy[J]. Zootaxa, 2011, 2755(1): 36. |
[78] |
LANKESTER E R. Das system dermedusen; erster theil einer monographie der medusen[J]. Nature, 1880, 21: 413-415.
DOI URL |
[79] |
GERSHWIN L A. Clonal and population variation in jellyfish symmetry[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(6): 993-1000.
DOI URL |
[1] | XU Changgui, GAO Yangdong, LIU Jun, PENG Guangrong, CHEN Zhaoming, LI Hongbo, CAI Junjie, MA Qingyou. Discovery of “detachment-core complex type” basins offshore the northern South China Sea and their oil and gas geological conditions:A case study of the Kaiping sag in the northern South China Sea [J]. Earth Science Frontiers, 2024, 31(6): 381-404. |
[2] | ZHOU Nianqing, GUO Mengshen, CAI Yi, LU Shuaishuai, LIU Xiaoqun, ZHAO Wengang. Mechanism of carbon cycle and source-sink conversion and quantitative carbon exchange model in critical zone of wetland [J]. Earth Science Frontiers, 2024, 31(6): 436-449. |
[3] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[4] | MENG Qingxiu, CAO Zicheng, DING Wenlong, YANG Debin, MA Hailong, DIAO Xindong, WANG Ming, HAN Pengyuan, WANG Huanhuan. Fracture stages and distribution patterns in Cambrian fractured dolomite reservoirs, Sandaoqiao gas field [J]. Earth Science Frontiers, 2024, 31(5): 247-262. |
[5] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[6] | JIA Guodong, XU Sheng, LIU Congqiang. Uranium series disequilibrium constraints on the formation and evolution of granite regolith in Longnan, Jiangxi Province [J]. Earth Science Frontiers, 2024, 31(4): 366-379. |
[7] | CHEN Fei, ZENG Weite, TONG Changliang, ZHANG Congwei, FU Biao, CHEN Yang, CHEN Bo. Quaternary sequence framework and sedimentary evolution of Qiongzhou Straits [J]. Earth Science Frontiers, 2024, 31(3): 100-112. |
[8] | HE Jianhua, LI Yong, DENG Hucheng, WANG Yuanyuan, MA Ruolong, TANG Jianming. Study on tectonic fracture characteristics and stage evolution of Longmaxi shale reservoir in Yongchuan, southeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(3): 298-311. |
[9] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[10] | HE Hui, MU Wenping, ZHANG Xiao, SONG Yubing, LÜ Yuanyang, WU Xiong, YE Baoying, BAI Zhongke. Spatio-temporal evolution evaluation of geological environment of large open-pit coal mine areas in Xilin Gol league [J]. Earth Science Frontiers, 2024, 31(3): 443-457. |
[11] | WANG Ruimin, SHEN Bing. The disappearance of banded iron formations: Research progress and perspectives on the origin of rhythmic Fe-rich/Si-rich laminae [J]. Earth Science Frontiers, 2024, 31(1): 111-126. |
[12] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[13] | WU Chun, LIU Hangyu, LU Feifan, LIU Bo, SHI Kaibo, HE Qing. Storm deposition characteristics and models for the Middle and Upper Cambrian in Xiaweidian, Xishan area, Beijing [J]. Earth Science Frontiers, 2023, 30(6): 110-124. |
[14] | ZHANG Liyu, CHEN Qianglu, LI Maowen, YUAN Kun, MA Xiaoxiao, XI Binbin, YUE Yong, HUANG Taiyu. Comparative study on the organic enrichment mechanisms between western Hubei and northeastern Guizhou during the Early Cambrian [J]. Earth Science Frontiers, 2023, 30(6): 181-198. |
[15] | QIU Nansheng, CHANG Jian, FENG Qianqian, ZENG Shuai, LIU Xiaoyu, LI Huili, MA Anlai. Maturation history of deep and ultra-deep source rocks, central and western basins, China [J]. Earth Science Frontiers, 2023, 30(6): 199-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||