Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 466-483.DOI: 10.13745/j.esf.sf.2025.9.3
Previous Articles Next Articles
LIU Meiyu1(), WU Wei1,*(
), WANG Hui2, LUO Weier1, WU Juanjuan1, GUO Xudong1
Received:
2025-02-20
Revised:
2025-07-30
Online:
2025-09-25
Published:
2025-10-14
Contact:
WU Wei
CLC Number:
LIU Meiyu, WU Wei, WANG Hui, LUO Weier, WU Juanjuan, GUO Xudong. Training set size takes precedence over similarity: A comparative study of machine learning models for landslide prediction in the Jishishan earthquake[J]. Earth Science Frontiers, 2025, 32(5): 466-483.
因子 | 异构4次地震 | 异构8次地震 | 传统4次地震 | 传统8次地震 |
---|---|---|---|---|
LCD | 0.023 778 | 0.008 591 | 0.007 332 | 0.016 242 |
Aspect | 0.133 877 | 0.118 729 | 0.007 290 | 0.094 656 |
Slope | 0.139 360 | 0.134 182 | 0.032 378 | 0.124 060 |
DEM | 0.170 792 | 0.144 311 | 0.027 497 | 0.132 693 |
Fault | 0.153 277 | 0.143 819 | 0.015 115 | 0.139 639 |
PGA | 0.080 306 | 0.183 184 | 0.022 557 | 0.265 930 |
River | 0.147 946 | 0.133 952 | 0.011 720 | 0.106 703 |
NDVI | 0.150 664 | 0.133 232 | 0.876 112 | 0.120 077 |
Table 1 Factor contribution of the random forest model
因子 | 异构4次地震 | 异构8次地震 | 传统4次地震 | 传统8次地震 |
---|---|---|---|---|
LCD | 0.023 778 | 0.008 591 | 0.007 332 | 0.016 242 |
Aspect | 0.133 877 | 0.118 729 | 0.007 290 | 0.094 656 |
Slope | 0.139 360 | 0.134 182 | 0.032 378 | 0.124 060 |
DEM | 0.170 792 | 0.144 311 | 0.027 497 | 0.132 693 |
Fault | 0.153 277 | 0.143 819 | 0.015 115 | 0.139 639 |
PGA | 0.080 306 | 0.183 184 | 0.022 557 | 0.265 930 |
River | 0.147 946 | 0.133 952 | 0.011 720 | 0.106 703 |
NDVI | 0.150 664 | 0.133 232 | 0.876 112 | 0.120 077 |
因子 | 异构4次地震 | 异构8次地震 | 传统4次地震 | 传统8次地震 |
---|---|---|---|---|
LCD | 0.138 074 | 0.039 520 | 0.009 724 | 0.068 789 |
Aspect | 0.071 046 | 0.021 518 | 0.001 652 | 0.037 196 |
Slope | 0.136 052 | 0.155 870 | 0.006 470 | 0.127 573 |
DEM | 0.147 697 | 0.107 061 | 0.005 043 | 0.089 514 |
Fault | 0.091 351 | 0.069 240 | 0.002 893 | 0.074 135 |
PGA | 0.186 176 | 0.508 977 | 0.000 959 | 0.470 988 |
River | 0.088 134 | 0.048 028 | 0.002 270 | 0.050 365 |
NDVI | 0.141 469 | 0.049 787 | 0.970 990 | 0.081 440 |
Table 2 Factor contribution of XGBoost model
因子 | 异构4次地震 | 异构8次地震 | 传统4次地震 | 传统8次地震 |
---|---|---|---|---|
LCD | 0.138 074 | 0.039 520 | 0.009 724 | 0.068 789 |
Aspect | 0.071 046 | 0.021 518 | 0.001 652 | 0.037 196 |
Slope | 0.136 052 | 0.155 870 | 0.006 470 | 0.127 573 |
DEM | 0.147 697 | 0.107 061 | 0.005 043 | 0.089 514 |
Fault | 0.091 351 | 0.069 240 | 0.002 893 | 0.074 135 |
PGA | 0.186 176 | 0.508 977 | 0.000 959 | 0.470 988 |
River | 0.088 134 | 0.048 028 | 0.002 270 | 0.050 365 |
NDVI | 0.141 469 | 0.049 787 | 0.970 990 | 0.081 440 |
模型 | 定量评估准确性/% | ||
---|---|---|---|
异构4次地震 | 异构8次地震 | 传统8次地震 | |
随机森林 | 55.00 | 60.35 | 53.60 |
XGBoost | 33.60 | 27.09 | 45.35 |
人工神经网络 | 83.84 | 22.79 | 29.65 |
Table 3 Quantitative assessment of accuracy
模型 | 定量评估准确性/% | ||
---|---|---|---|
异构4次地震 | 异构8次地震 | 传统8次地震 | |
随机森林 | 55.00 | 60.35 | 53.60 |
XGBoost | 33.60 | 27.09 | 45.35 |
人工神经网络 | 83.84 | 22.79 | 29.65 |
[1] | BUDIMIR M E A, ATKINSON P M, LEWIS H G. A systematic review of landslide probability mapping using logistic regression[J]. Landslides, 2015, 12(3): 419-436. |
[2] | LEE S, PRADHAN B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides, 2007, 4(1): 33-41. |
[3] | HE S W, PAN P, DAI L, et al. Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China[J]. Geomorphology, 2012, 171/172: 30-41. |
[4] | SAHA A, TRIPATHI L, VILLURI V G K, et al. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology[J]. Environmental Science and Pollution Research, 2024, 31(7): 10443-10459. |
[5] | KHALIL U, IMTIAZ I, ASLAM B, et al. Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district[J]. Frontiers in Environmental Science, 2022, 10: 1028373. |
[6] | HE Q, JIANG Z Y, WANG M, et al. Landslide and wildfire susceptibility assessment in Southeast Asia using ensemble machine learning methods[J]. Remote Sensing, 2021, 13(8): 1572. |
[7] | XI C J, HAN M, HU X W, et al. Effectiveness of Newmark-based sampling strategy for coseismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 174. |
[8] | TIAN Y Y, XU C, MA S Y, et al. Inventory and spatial distribution of landslides triggered by the 8th August 2017 Mw 6.5 Jiuzhaigou earthquake, China[J]. Journal of Earth Science, 2019, 30(1): 206-217. |
[9] | CHEN W, XIE X S, PENG J B, et al. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method[J]. Catena, 2018, 164: 135-149. |
[10] | PRADHAN B, LEE S. Landslide risk analysis using artificial neural network model focusing on different training sites[J]. International Journal of Physical Sciences, 2009, 3(11): 1-15. |
[11] | BISWAJEET P, SARO L. Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis using an artificial neural network model[J]. Earth Science Frontiers, 2007, 14(6): 143-151. |
[12] | ZHANG J Y, MA X L, ZHANG J L, et al. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model[J]. Journal of Environmental Management, 2023, 332: 117357. |
[13] | KAVZOGLU T, TEKE A. Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using extreme gradient boosting (XGBoost)[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 201. |
[14] | HONG H Y, PRADHAN B, JEBUR M N, et al. Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines[J]. Environmental Earth Sciences, 2015, 75(1): 40. |
[15] | HUANG Y, ZHAO L. Review on landslide susceptibility mapping using support vector machines[J]. Catena, 2018, 165: 520-529. |
[16] | MA J W, LEI D Z, REN Z Y, et al. Automated machine learning-based landslide susceptibility mapping for the Three Gorges Reservoir area, China[J]. Mathematical Geosciences, 2024, 56(5): 975-1010. |
[17] | HONG H Y. Landslide susceptibility assessment using locally weighted learning integrated with machine learning algorithms[J]. Expert Systems with Applications, 2024, 237: 121678. |
[18] | SHARMA N, SAHARIA M, RAMANA G V. High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data[J]. Catena, 2024, 235: 107653. |
[19] | YOUSEFI Z, ALESHEIKH A A, JAFARI A, et al. Stacking ensemble technique using optimized machine learning models with boruta-XGBoost feature selection for landslide susceptibility mapping: a case of Kermanshah province, Iran[J]. Information, 2024, 15(11): 689. |
[20] | TEHRANI F S, CALVELLO M, LIU Z, et al. Machine learning and landslide studies: recent advances and applications[J]. Natural Hazards, 2022, 114(2): 1197-1245. |
[21] | POURGHASEMI H R, KARIMINEJAD N, AMIRI M, et al. Assessing and mapping multi-hazard risk susceptibility using a machine learning technique[J]. Scientific Reports, 2020, 10: 3203. |
[22] | KORUP O, STOLLE A. Landslide prediction from machine learning[J]. Geology Today, 2014, 30(1): 26-33. |
[23] | LIU L L, YANG C, WANG X M. Landslide susceptibility assessment using feature selection-based machine learning models[J]. Geomechanics and Engineering, 2021, 25(1): 1-16. |
[24] | WANG Y H, WANG L Q, LIU S L, et al. A comparative study of regional landslide susceptibility mapping with multiple machine learning models[J]. Geological Journal, 2024, 59(9): 2383-2400. |
[25] | YANG S L, TAN J Y, LUO D Y, et al. Sample size effects on landslide susceptibility models: a comparative study of heuristic, statistical, machine learning, deep learning and ensemble learning models with SHAP analysis[J]. Computers & Geosciences, 2024, 193: 105723. |
[26] | MICHELETTI N, FORESTI L, ROBERT S, et al. Machine learning feature selection methods for landslide susceptibility mapping[J]. Mathematical Geosciences, 2014, 46: 33-57. |
[27] | GU T, DUAN P, WANG M, et al. Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping[J]. Scientific Reports, 2024, 14(1): 7201. |
[28] | ZHAO F C, MIAO F S, WU Y P, et al. Refined landslide susceptibility mapping in township area using ensemble machine learning method under dataset replenishment strategy[J]. Gondwana Research, 2024, 131: 20-37. |
[29] | HUANG F M, XIONG H W, ZHOU X T, et al. Modelling uncertainties and sensitivity analysis of landslide susceptibility prediction under different environmental factor connection methods and machine learning models[J]. KSCE Journal of Civil Engineering, 2024, 28(1): 45-62. |
[30] | XU S L, SONG Y X, HAO X L. A comparative study of shallow machine learning models and deep learning models for landslide susceptibility assessment based on imbalanced data[J]. Forests, 2022, 13(11): 1908. |
[31] | KADAVI P R, LEE C W, LEE S. Application of ensemble-based machine learning models to landslide susceptibility mapping[J]. Remote Sensing, 2018, 10(8): 1252. |
[32] | YANG C, LIU L L, HUANG F M, et al. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples[J]. Gondwana Research, 2023, 123: 198-216. |
[33] | FU X, LIU Y F, ZHU Q, et al. Reliable assessment approach of landslide susceptibility in broad areas based on optimal slope units and negative samples involving priori knowledge[J]. International Journal of Digital Earth, 2022, 15(1): 2495-2510. |
[34] | HUSSIN H Y, ZUMPANO V, REICHENBACH P, et al. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model[J]. Geomorphology, 2016, 253: 508-523. |
[35] | LIU L L, ZHANG Y L, XIAO T, et al. A frequency ratio-based sampling strategy for landslide susceptibility assessment[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 360. |
[36] | LE X H, CHOI C, EU S, et al. Quantitative evaluation of uncertainty and interpretability in machine learning-based landslide susceptibility mapping through feature selection and explainable AI[J]. Frontiers in Environmental Science, 2024, 12: 1424988. |
[37] | ZHU J, BAISE L G, THOMPSON E M. An updated geospatial liquefaction model for global application[J]. Bulletin of the Seismological Society of America, 2017, 107(3): 1365-1385. |
[38] | NOWICKI JESSEE M A, HAMBURGER M W, ALLSTADT K, et al. A global empirical model for near-real-time assessment of seismically induced landslides[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(8): 1835-1859. |
[39] | SHAO X Y, MA S Y, XU C, et al. Effects of sampling intensity and non-slide/slide sample ratio on the occurrence probability of coseismic landslides[J]. Geomorphology, 2020, 363: 107222. |
[40] | YANG H, SHI P J, QUINCEY D, et al. A heterogeneous sampling strategy to model earthquake-triggered landslides[J]. International Journal of Disaster Risk Science, 2023, 14(4): 636-648. |
[41] | CHANG Z L, HUANG J S, HUANG F M, et al. Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models[J]. Gondwana Research, 2023, 117: 307-320. |
[42] | SONG Y Z, YANG D G, WU W C, et al. Evaluating landslide susceptibility using sampling methodology and multiple machine learning models[J]. ISPRS International Journal of Geo-Information, 2023, 12(5): 197. |
[43] | CHEN S, MIAO Z L, WU L X, et al. A one-class-classifier-based negative data generation method for rapid earthquake-induced landslide susceptibility mapping[J]. Frontiers in Earth Science, 2021, 9: 609896. |
[44] | ZHANG Y Z, YAN Q S. Landslide susceptibility prediction based on high-trust non-landslide point selection[J]. ISPRS International Journal of Geo-Information, 2022, 11(7): 398. |
[45] | ZHU Y C, SUN D L, WEN H J, et al. Considering the effect of non-landslide sample selection on landslide susceptibility assessment[J]. Geomatics, Natural Hazards and Risk, 2024, 15: 2392778. |
[46] | DOU H Q, HE J B, HUANG S Y, et al. Influences of non-landslide sample selection strategies on landslide susceptibility mapping by machine learning[J]. Geomatics, Natural Hazards and Risk, 2023, 14: 2285719. |
[47] | WU B, SHI Z M, ZHENG H C, et al. Impact of sampling for landslide susceptibility assessment using interpretable machine learning models[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(11): 461. |
[48] | XU C, XU X W, YAO X, et al. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 2014, 11(3): 441-461. |
[49] | XU C, XU X W, YU G H. Landslides triggered by slipping-fault-generated earthquake on a plateau: an example of the 14 April 2010, Ms 7.1, Yushu, China earthquake[J]. Landslides, 2013, 10(4): 421-431. |
[50] | XU C, XU X W, SHYU J B H. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013[J]. Geomorphology, 2015, 248: 77-92. |
[51] | XU C, XU X W, SHYU J B H, et al. Landslides triggered by the 22 July 2013 Minxian-Zhangxian, China, Mw 5.9 earthquake: inventory compiling and spatial distribution analysis[J]. Journal of Asian Earth Sciences, 2014, 92: 125-142. |
[52] | WU W Y, XU C, WANG X Q, et al. Landslides triggered by the 3 August 2014 Ludian (China) Mw 6.2 earthquake: an updated inventory and analysis of their spatial distribution[J]. Journal of Earth Science, 2020, 31(4): 853-866. |
[53] | XU C, WANG S Y, XU X W, et al. A panorama of landslides triggered by the 8 August 2017 Jiuzhaigou, Sichuan Ms 7.0 earthquake[J]. Seismology and Geology, 2018, 40(1): 232-260. |
[54] | HU K H, ZHANG X P, YOU Y, et al. Landslides and dammed lakes triggered by the 2017 Ms 6.9 Milin earthquake in the Tsangpo gorge[J]. Landslides, 2019, 16(5): 993-1001. |
[55] | SHAO X Y, XU C, MA S Y. Preliminary analysis of coseismic landslides induced by the 1 June 2022 Ms 6.1 Lushan earthquake, China[J]. Sustainability, 2022, 14(24): 16554. |
[56] | FAN X M, YUNUS A P, SCARINGI G, et al. Rapidly evolving controls of landslides after a strong earthquake and implications for hazard assessments[J]. Geophysical Research Letters, 2021, 48: e2020GL090509. |
[57] | CHEN W, PANAHI M, POURGHASEMI H R. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling[J]. Catena, 2017, 157: 310-324. |
[58] | PHAM B T, TIEN BUI D, POURGHASEMI H R, et al. Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve Bayes, multilayer perceptron neural networks, and functional trees methods[J]. Theoretical and Applied Climatology, 2017, 128(1): 255-273. |
[59] | TIEN BUI D, TUAN T A, KLEMPE H, et al. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree[J]. Landslides, 2016, 13(2): 361-378. |
[60] | YOUSSEF A M, POURGHASEMI H R, EL-HADDAD B A, et al. Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(1): 63-87. |
[61] | YANG J, HUANG X. 30 m annual land cover and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. |
[62] | HALL M A. Correlation-based feature selection for machine learning[D]. Hamilton: The University of Waikato, 1999. |
[63] | 肖克炎, 李程, 唐瑞, 等. 大数据智能预测评价[J]. 地学前缘, 2025, 32(4): 20-37. |
[64] | CHEN C, FAN L. Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models[J]. Stochastic Environmental Research and Risk Assessment, 2023: 1-26. https://doi.org/10.1007/s00477-023-02556-4. |
[65] | LIU Z Q, GILBERT G, CEPEDA J M, et al. Modelling of shallow landslides with machine learning algorithms[J]. Geoscience Frontiers, 2021, 12(1): 385-393. |
[66] | LI W, XU Q, LI Q, et al. Preliminary analysis of the coseismic geohazards induced by the 2023 Jishishan Ms 6.2 earthquake[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2024, 51(1): 33-45. |
[67] | VABALAS A, GOWEN E, POLIAKOFF E, et al. Machine learning algorithm validation with a limited sample size[J]. PLoS One, 2019, 14(11): e0224365. |
[68] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[69] | MEENA S R, SOARES L P, GROHMANN C H, et al. Landslide detection in the Himalayas using machine learning algorithms and U-Net[J]. Landslides, 2022, 19(5): 1209-1229. |
[70] | YOUSSEF A M, EL-HADDAD B A, SKILODIMOU H D, et al. Landslide susceptibility, ensemble machine learning, and accuracy methods in the southern Sinai Peninsula, Egypt: assessment and mapping[J]. Natural Hazards, 2024, 120(15): 14227-14258. |
[71] | YANG D D, QIU H J, YE B F, et al. Distribution and recurrence of warming-induced retrogressive thaw slumps on the central Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(8): e2022JF007047. |
[72] | AI X, SUN B T, CHEN X Z. Construction of small sample seismic landslide susceptibility evaluation model based on Transfer Learning: a case study of Jiuzhaigou earthquake[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(3): 116. |
[73] | VALIANTE M, GUIDA D, DELLA SETA M, et al. A spatiotemporal object-oriented data model for landslides (LOOM)[J]. Landslides, 2021, 18(4): 1231-1244. |
[74] | HOANG D A, LE H V, PHAM D V, et al. Hybrid BBO-DE optimized SPAARCTree ensemble for landslide susceptibility mapping[J]. Remote Sensing, 2023, 15(8): 2187. |
[75] | NEZHAD S K, BAROONI M, VELIOGLU SOGUT D, et al. Ensemble neural networks for the development of storm surge flood modeling: a comprehensive review[J]. Journal of Marine Science and Engineering, 2023, 11(11): 2154. |
[76] | DE SANTI M, KHAN U T, ARNOLD M, et al. Forecasting point-of-consumption chlorine residual in refugee settlements using ensembles of artificial neural networks[J]. NPJ Clean Water, 2021, 4: 35. |
[1] | HU Ziyue, ZHANG Runxin, MA Yue, PENG Nian. Fractal dimension of the Dongting Lake drainage network based on DEM and its relationship with geological hazards [J]. Earth Science Frontiers, 2025, 32(5): 534-545. |
[2] | DI Yong, WEI Yunjie, TAN Weijia, XU Qiang. Risk assessment of landslide-induced river blockage based on RAMMS [J]. Earth Science Frontiers, 2025, 32(5): 546-556. |
[3] | SUN Yongshuai, HU Ruilin. Effect of bedrock slope angle on deformation and failure of overlying rock-soil mixture: Insight into the evolution of landslides [J]. Earth Science Frontiers, 2023, 30(3): 494-504. |
[4] | CHEN Jian, CHEN Ruichen, CUI Zhijiu. Research progress on the morphology and sedimentology of long runout landslides [J]. Earth Science Frontiers, 2021, 28(4): 349-360. |
[5] | SUN Qiliang, XIE Xinong, WU Shiguo. Submarine landslides in the northern South China Sea: characteristics, geohazard evaluation and perspectives [J]. Earth Science Frontiers, 2021, 28(2): 258-270. |
[6] | HUANG Xiaolong, WU Zhonghai, LIU Feng, TIAN Tingting, HUANG Xiaojin, ZHANG Duo. Tectonic interpretation of the main paleoseismic landslides and their distribution characteristics in the Chenghai fault zone, Northwest Yunnan [J]. Earth Science Frontiers, 2021, 28(2): 125-139. |
[7] | ZHANG Yongshuang, LIU Xiaoyi, WU Rui’an, GUO Changbao, REN Sanshao. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 94-105. |
[8] | CHEN Jian, CUI Zhijiu, CHEN Ruichen, ZHENG Xinxin. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River [J]. Earth Science Frontiers, 2021, 28(2): 85-93. |
[9] | FAN Xuanmei, DAI Lanxin, ZHONG Yujin, LI Jingjuan, WANG Lansheng. Recent research on the Diexi paleo-landslide: dam and lacustrine deposits upstream of the Minjiang River, Sichuan, China [J]. Earth Science Frontiers, 2021, 28(2): 71-84. |
[10] | YIN Zhiqiang, WEI Gang, QIN Xiaoguang, LI Wenjuan, ZHAO Wuji. Research progress on landslides and dammed lakes in the upper reaches of the Yellow River, northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 46-57. |
[11] | BAI Shibiao, CUI Peng, GE Yonggang, WANG Hao. Geochronological analysis of fossil landslides and improvement of dating accuracy [J]. Earth Science Frontiers, 2021, 28(2): 19-34. |
[12] | CHEN Xiaoli, SHAN Xinjian, ZHANG Ling, LIU Chunguo, HAN Nana4, LAN Jian. Quick assessment of earthquake-triggered landslide hazards: a case study of the 2017 MS 7.0 Jiuzhaigou earthquake [J]. Earth Science Frontiers, 2019, 26(2): 312-320. |
[13] | WANG Chi-Hua, GUO Zhao-Cheng, DU Meng-Liang, CHENG Zun-Lan. Model study of predicting rainstorm induced landslide and debris flow at Niumian Gully, the focal area of 20080512 Earthquake. [J]. Earth Science Frontiers, 2012, 19(1): 228-238. |
[14] | WANG Chi-Hua, GUO Zhao-Cheng, DU Meng-Liang, CHENG Zun-Lan. Model study of monitoring and early warning of rainstorm induced landslide and debris flow based on digital landslide technology. [J]. Earth Science Frontiers, 2011, 18(5): 303-309. |
[15] | Liu-Chang-Zheng, CHEN Yue-Long, HU Guang, DIAO Juan, LI Yue, LI Lin-Ye, JI Bing-Yan, HONG Yuan-Kui. Some problems in the study of the genesis of Xigeda Formation. [J]. Earth Science Frontiers, 2011, 18(5): 271-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||