Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 190-204.DOI: 10.13745/j.esf.sf.2025.7.19
Previous Articles Next Articles
WANG Wurong1,2(), LIU Xianyang3, YUE Dali1,2,*(
), WAN Xiaolong1,2,4, LIU Ruijing1,2, LI Shixiang5, LU Hao1,2, LIU Jian5, WU Guangzhen1,2, WU Shenghe1,2
Received:
2024-11-25
Revised:
2025-07-21
Online:
2025-09-25
Published:
2025-10-14
Contact:
YUE Dali
CLC Number:
WANG Wurong, LIU Xianyang, YUE Dali, WAN Xiaolong, LIU Ruijing, LI Shixiang, LU Hao, LIU Jian, WU Guangzhen, WU Shenghe. Distribution of quality difference of tight sandstone reservoirs in sublacustrine fan of depression lacustrine basin: A case study of Chang 6 oil-bearing interval of Yanchang Formation in Heshui area, Ordos Basin, China[J]. Earth Science Frontiers, 2025, 32(5): 190-204.
Fig.1 Geological sketch map and stratigraphic characteristics of Yanchang Formation in the Heshui area of the Ordos Basin. a adapted from [26]; b modified after [32-33].
孔喉组合类型 | 孔隙类型比例/% | 喉道类型比例/% | |||||
---|---|---|---|---|---|---|---|
大粒间孔 | 小粒间孔 | 粒内孔 | 微孔隙群 | 宽片状 | 窄片状 | ||
大粒间孔-粒内孔- 宽片状喉道 | >50 | <25 | >25 | <25 | >50 | <50 | |
小粒间孔-宽片状喉道 | <25 | >50 | <25 | <25 | >50 | <50 | |
粒内孔-微孔隙群- 窄片状喉道 | <25 | <25 | >50 | >25 | <50 | >50 | |
微孔隙群-窄片状喉道 | <25 | <25 | <25 | >50 | <50 | >50 |
Table 1 Interpretation standard of different pore-throat configurations of the Chang 6 tight sandstones in the Heshui area
孔喉组合类型 | 孔隙类型比例/% | 喉道类型比例/% | |||||
---|---|---|---|---|---|---|---|
大粒间孔 | 小粒间孔 | 粒内孔 | 微孔隙群 | 宽片状 | 窄片状 | ||
大粒间孔-粒内孔- 宽片状喉道 | >50 | <25 | >25 | <25 | >50 | <50 | |
小粒间孔-宽片状喉道 | <25 | >50 | <25 | <25 | >50 | <50 | |
粒内孔-微孔隙群- 窄片状喉道 | <25 | <25 | >50 | >25 | <50 | >50 | |
微孔隙群-窄片状喉道 | <25 | <25 | <25 | >50 | <50 | >50 |
储层质量分类 | I类 | II类 | III类 | |
---|---|---|---|---|
储层 物性 | 孔隙度/% | >10 | 3~12 | <5 |
渗透率/mD | >0.1 | 0.01~0.1 | <0.01 | |
孔隙 结构 特征 | 孔隙结构类型 | I类 | II类 | III类 |
孔隙类型 | 大粒间孔和粒内溶蚀孔 为主,少量小粒间孔 | 小粒间孔为主,少量大粒 间孔或粒内溶蚀孔 | 微孔隙群或粒内溶蚀孔为主 | |
喉道类型 | 宽片状喉道为主,偶见缩颈型喉道 | 宽片状喉道为主 | 窄片状喉道或管束状喉道为主 | |
孔喉组合类型 | 大粒间孔-粒内孔- 宽片状喉道组合 | 小粒间孔-宽片状喉道组合 | 粒内孔-微孔隙群-窄片状喉道、 微孔隙群-窄片状喉道组合 | |
高压压汞曲线 (引自文献[ | | | | |
沉积与 成岩 特征 | 主要岩相类型 | 交错层理细砂岩(Sc) 中部 | 块状层理细砂岩(Sm) 中部 | 砂泥界面附近Sc和Sm岩相以及 粉砂到极细粒砂岩(Ss) |
成岩作用特征 | 溶解作用较强 胶结作用较弱 | 溶解作用中等 胶结作用较弱 | 强胶结作用或 强压实作用 | |
可动 流体 | 可动流体饱和度/% | >35 | 15~40 | <15 |
流体可动性 | 较好 | 中等 | 较差 | |
可动流体分布模式图 (引自文献[ | | | |
Table 2 Classification scheme of the reservoir quality of the Chang 6 tight sandstones in the Heshui area
储层质量分类 | I类 | II类 | III类 | |
---|---|---|---|---|
储层 物性 | 孔隙度/% | >10 | 3~12 | <5 |
渗透率/mD | >0.1 | 0.01~0.1 | <0.01 | |
孔隙 结构 特征 | 孔隙结构类型 | I类 | II类 | III类 |
孔隙类型 | 大粒间孔和粒内溶蚀孔 为主,少量小粒间孔 | 小粒间孔为主,少量大粒 间孔或粒内溶蚀孔 | 微孔隙群或粒内溶蚀孔为主 | |
喉道类型 | 宽片状喉道为主,偶见缩颈型喉道 | 宽片状喉道为主 | 窄片状喉道或管束状喉道为主 | |
孔喉组合类型 | 大粒间孔-粒内孔- 宽片状喉道组合 | 小粒间孔-宽片状喉道组合 | 粒内孔-微孔隙群-窄片状喉道、 微孔隙群-窄片状喉道组合 | |
高压压汞曲线 (引自文献[ | | | | |
沉积与 成岩 特征 | 主要岩相类型 | 交错层理细砂岩(Sc) 中部 | 块状层理细砂岩(Sm) 中部 | 砂泥界面附近Sc和Sm岩相以及 粉砂到极细粒砂岩(Ss) |
成岩作用特征 | 溶解作用较强 胶结作用较弱 | 溶解作用中等 胶结作用较弱 | 强胶结作用或 强压实作用 | |
可动 流体 | 可动流体饱和度/% | >35 | 15~40 | <15 |
流体可动性 | 较好 | 中等 | 较差 | |
可动流体分布模式图 (引自文献[ | | | |
储层类别 | 声波时差/(μs·m-1) | 自然伽马/API | 密度/(g·cm-3) | 常量 |
---|---|---|---|---|
I类 | 12.449 | -3.894 | 798.137 | -2 275.876 |
II类 | 12.072 | -3.757 | 801.042 | -2 208.483 |
III类 | 11.891 | -3.690 | 810.315 | -2 198.242 |
Table 3 Fisher discriminant function coefficients of the Chang 6 tight sandstone reservoir in the Heshui area
储层类别 | 声波时差/(μs·m-1) | 自然伽马/API | 密度/(g·cm-3) | 常量 |
---|---|---|---|---|
I类 | 12.449 | -3.894 | 798.137 | -2 275.876 |
II类 | 12.072 | -3.757 | 801.042 | -2 208.483 |
III类 | 11.891 | -3.690 | 810.315 | -2 198.242 |
储层质量 | 预测结果 | 合计 | ||||
---|---|---|---|---|---|---|
I类储层 | II类储层 | III类储层 | ||||
初始 数据 | 计数 | I类储层 | 15 | 2 | 0 | 17 |
II类储层 | 10 | 120 | 19 | 149 | ||
III类储层 | 1 | 5 | 37 | 43 | ||
回判率/% | I类储层 | 88.2 | 11.8 | 0 | 100.0 | |
II类储层 | 6.7 | 80.5 | 12.8 | 100.0 | ||
III类储层 | 2.3 | 11.6 | 86.0 | 100.0 |
Table 4 Fisher discrimination results of different types of the Chang 6 tight sandstone reservoir in the Heshui area
储层质量 | 预测结果 | 合计 | ||||
---|---|---|---|---|---|---|
I类储层 | II类储层 | III类储层 | ||||
初始 数据 | 计数 | I类储层 | 15 | 2 | 0 | 17 |
II类储层 | 10 | 120 | 19 | 149 | ||
III类储层 | 1 | 5 | 37 | 43 | ||
回判率/% | I类储层 | 88.2 | 11.8 | 0 | 100.0 | |
II类储层 | 6.7 | 80.5 | 12.8 | 100.0 | ||
III类储层 | 2.3 | 11.6 | 86.0 | 100.0 |
Fig.6 Cross-plot showing the relationship between the thickness of different types of matrix reservoirs and the sandbody thickness of small layers in the Heshui area
Fig.7 Profile dstribuion of the architeture and matrix reservoir quality perpendicular to the paleocurrent direction in the dense well area of the Heshui area
Fig. 8 Profile distribution of the architecture and matrix reservoir quality parallel to the paleocurrent direction in the dense well area of the Heshui area
Fig.9 Histogram showing the average thickness of different types of matrix reservoirs in the Chang ${{6}_{3}}^{3}$ small layer to Chang ${{6}_{2}}^{1}$ small layer in the dense well area of the Heshui area
[1] | LAW B E, CURTIS J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11): 1851-1852. |
[2] | FIC J, PEDERSEN P K. Reservoir characterization of a “tight” oil reservoir, the middle Jurassic Upper Shaunavon Member in theWhitemud and Eastbrook pools, SW Saskatchewan[J]. Marine and Petroleum Geology, 2013, 44: 41-59. |
[3] | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 9(2): 129-136. |
[4] | 王香增. 鄂尔多斯盆地延长探区低渗致密油气成藏理论进展及勘探实践[J]. 地学前缘, 2023, 30(1): 143-155. |
[5] | 赵政璋, 杜金虎. 致密油气[M]. 北京: 石油工业出版社, 2012. |
[6] | WANG W, YUE D, ERIKSSON K A, et al. Qualitative and quantitative characterization of multiple factors that influence movable fluid saturation in lacustrine deep-water gravity-flow tight sandstones from theYanchang Formation, southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2020, 121: 104625. |
[7] | 中国国家标准化管理委员会. GB/T 34906-2017 致密油地质评价方法[S]. (2017-11-01) [2018-05-01]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=CCD6AD6C921E343B01478C9A9E4ECC01 |
[8] | 姚泾利, 邓秀芹, 赵彦德, 等. 鄂尔多斯盆地延长组致密油特征[J]. 石油勘探与开发, 2013, 40(2): 150-158. |
[9] | 李桢. 致密砂体内部成岩非均质与储层质量差异研究——以红河油田延长组浅水三角洲分流河道带为例[D]. 北京: 中国石油大学(北京), 2018. |
[10] | TALLING P J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings[J]. Marine Geology, 2014, 352: 155-182. |
[11] | YUE D, WU S, XU Z, et al. Reservoir quality, natural fractures, and gas productivity of upper TriassicXujiahe tight gas sandstones in western Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 370-386. |
[12] | 蒋恕, 王浩, 郭涛, 等. 渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素[J]. 石油与天然气地, 2022, 43(4): 823-832. |
[13] | 梁晓伟, 鲜本忠, 冯胜斌, 等. 鄂尔多斯盆地陇东地区长7段重力流砂体构型及其主控因素[J]. 沉积学报, 2022. 40(3): 641-652. |
[14] | 潘树新, 刘化清. 大型坳陷湖盆异重流成因的水道—湖底扇系统: 以松辽盆地白垩系嫩江组一段为例[J]. 石油勘探与开发, 2017, 44(6): 860-870. |
[15] | 董艳蕾, 朱筱敏, 韦敏鹏, 等. 敦煌盆地五墩凹陷侏罗系层序地层格架与沉积体系分布[J]. 地学前缘, 2021, 28(1): 177-189. |
[16] | MORAD S, AL-RAMADAN K, KETZER J M, et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin, 2010, 94(8): 1267-1309. |
[17] | MORAD S, KETZER J M, DE ROS L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins[J]. Sedimentology, 2000, 47(s1): 95-120. |
[18] | LI Z, WU S, XIA D, et al. Diagenetic alterations and reservoir heterogeneity within the depositional facies: A case study from distributary-channel belt sandstone of Upper TriassicYanchang Formation reservoirs (Ordos Basin, China)[J]. Marine and Petroleum Geology, 2017, 86: 950-971. |
[19] | 尹帅, 张子阳, 张星星, 等. 扇三角洲前缘非常规致密油储层裂缝发育模式: 以泌阳凹陷东南部古近系核三段为例[J]. 地学前缘, 2024, 31(5): 139-155. |
[20] | 胡明毅, 邓猛, 胡忠贵, 等. 四川盆地石炭系黄龙组储层特征及主控因素分析[J]. 地学前缘, 2015, 22(3): 310-321. |
[21] | YANG T, CAO Y, FRIIS H, et al. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the third member of theShahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China[J]. Marine and Petroleum Geology, 2018, 92: 547-564. |
[22] | LIU J, XIAN B, WANG J, et al. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Depression, Bohai Bay Basin, east China[J]. Sedimentary Geology, 2017, 362: 66-82. |
[23] | 赵晓明, 刘丽, 谭程鹏, 等. 海底水道体系沉积构型样式及控制因素: 以尼日尔三角洲盆地陆坡区为例[J]. 古地理学报, 2018, 20(5): 825-840. |
[24] | 张佳佳, 吴胜和. 海底扇朵叶沉积构型研究进展[J]. 中国海上油气, 2019, 31(5): 88-106. |
[25] | ZHANG J, WU S, HU G, et al. Application of four-dimensional monitoring to understand reservoir heterogeneity controls on fluid flow during the development of a submarine channel system[J]. AAPG Bulletin, 2018, 102(10): 2017-2044. |
[26] | 屈雪峰, 王武荣, 谢启超, 等. 坳陷湖盆湖底扇储层单砂体构型: 以鄂尔多斯盆地合水地区三叠系长6油层组为例[J]. 地球科学与环境学报, 2021, 43(5): 850-867. |
[27] | 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京: 石油工业出版社, 2002. |
[28] | 刘帅, 阮壮, 杨志辉, 等. 鄂尔多斯盆地南缘中晚三叠世物源演变及其地质意义[J]. 古地理学报, 2019, 21(6): 939-958. |
[29] | 刘芬, 朱筱敏, 李洋, 等. 鄂尔多斯盆地西南部延长组重力流沉积特征及相模式[J]. 石油勘探与开发, 2015, 42(5): 577-588. |
[30] | 李相博, 姚泾利, 刘化清, 等. 鄂尔多斯盆地中生界低幅度隆起构造成因类型及其对油气分布的控制作用[J]. 现代地质, 2013, 27(4): 755-764. |
[31] | 杨克文, 史成恩, 万晓龙, 等. 鄂尔多斯盆地长8、长6天然裂缝差异性研究及其对开发的影响[J]. 西安石油大学学报(自然科学版), 2008, 23(6): 37-41. |
[32] | LI X, Liu H, Pan S, et al. Subaqueous sandy mass-transport deposits in lacustrine facies of the Upper Triassic Yanchang Formation, Ordos Basin, Central China[J]. Marine and Petroleum Geology, 2018, 97: 66-77. |
[33] | WANG W, YUE D, ERIKSSON K A, et al. Quantification and prediction of pore structures in tight oil reservoirs based on multifractal dimensions from integrated pressure- and rate-controlledporosimetry for the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Energy and Fuels, 2020, 34(4): 4366-4383. |
[34] | 刘自亮, 朱筱敏, 廖纪佳, 等. 鄂尔多斯盆地西南缘上三叠统延长组层序地层学与砂体成因研究[J]. 地学前缘, 2013, 20(2): 1-9. |
[35] | 王文枫, 岳大力, 赵继勇, 等. 利用地震正演模拟方法研究地层结构——以鄂尔多斯盆地合水地区延长组三段为例[J]. 石油地球物理勘探, 2020, 55(2): 411-418. |
[36] | WANG W, YUE D, ZHAO J, et al. Diagenetic alteration and its control on reservoir quality of tight sandstones in lacustrine deep-water gravity-flow deposits: A case study of the Yanchang Formation, southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 110: 676-694. |
[37] | 韩扬. 鄂尔多斯盆地板桥-合水地区长6储层微观孔隙结构及渗流特征研究[D]. 西安: 西北大学, 2020. |
[38] | 吴胜和. 储层表征与建模[M]. 北京: 石油工业出版社, 2010. |
[39] | LI S, CHENG L, LI X, et al. Nonlinear seepage flow of ultralow permeability reservoirs[J]. Petroleum Exploration and Development, 2008, 35: 606-612. |
[40] | ZOU C, YANG Z, TAO S, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39: 15-32. |
[41] | 吴蒙, 秦勇, 王晓青, 等. 中国致密砂岩储层流体可动性及其影响因素[J]. 吉林大学学报(地球科学版), 2021, 51(1): 35-51. |
[42] | LYU C, NING Z, WANG Q, et al. Application of NMR T2 to pore size distribution and movable fluid distribution in tight sandstones[J]. Energy and Fuels, 2018, 32: 1395-1405. |
[43] | QIAO J, ZENG J, MA Y, et al. Effects of mineralogy on pore structure and fluid flow capacity of deeply buried sandstone reservoirs with a case study in the Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106986. |
[44] | AL-MAHROOQI S H, GRATTONI C A, MOSS A K, et al. An investigation of the effect of wettability on NMR characteristics of sandstone rock and fluid systems[J]. Journal of Petroleum Science and Engineering, 2003, 39: 389-398. |
[45] | 张姮妤, 高庆冕, 齐秀丽. 薄差水淹层Fisher判别分析方法[J]. 大庆石油地质与开发, 2016, 35(4): 147-151. |
[46] | 吴浩, 刘锐娥, 纪友亮, 等. 典型致密砂岩气储层孔隙结构分类及其意义: 以鄂尔多斯盆地盒8段为例[J]. 天然气地球科学, 2016, 27(5): 835-843. |
[1] | CHEN Yanyan, WEN Zhixin, TAO Shizhen, WU Wei, LIU Xiangbai, YANG Xiuchun, GAO Jianrong, LIU Qingyao, LI Jing, YANG Yiqing, CHEN Yue. Enrichment mechanism and resource potential of helium in shale gas and coalbed methane plays: A case study of shale gas in Southern Sichuan Basin and coalbed methane in Eastern Ordos Basin [J]. Earth Science Frontiers, 2025, 32(5): 244-257. |
[2] | QU Linbo, YUE Dali, WANG Wurong, JIN Wujun, LAI Hechuan, WU Qingzhao, LIAO Changzhen, FU Jialin, ZHANG Jiarui, LI Wei. Variable rock-electrical saturation model for dual-medium tight sandstones: A case from the second member of the Upper Triassic Xujiahe Formation, Western Sichuan Depression [J]. Earth Science Frontiers, 2025, 32(5): 377-388. |
[3] | YIN Senlin, LIN Shaoling, HU Zhangming, ZHAO Junwei, YANG Yingtao, ZHANG Ling, CHEN Gongyang, CHEN Weichang. 3D model of mineral interior tight sandstone reservoir and distribution of fracture dessert: Taking 2nd Xujiahe Formation outcrop section in western Sichuan Basin as an example [J]. Earth Science Frontiers, 2025, 32(5): 404-416. |
[4] | WAN Xiaolong, WU Shenghe, ZHOU Xinping, XU Zhenhua, FU Jinhua, WANG Zifeng, MA Shuwei, WU Degang, LI Zhen, LIU Mingcheng. Research on the prediction method of 3D reservoir sweet spots distribution of shale oil in shale intercalated layer: A case from the Yanchang Formation of B15 block, Ordos Basin [J]. Earth Science Frontiers, 2025, 32(5): 417-431. |
[5] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[6] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[7] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[8] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[9] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[10] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[11] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[12] | ZHAI Yonghe, HE Dengfa, KAI Baize. Tectono-depositional environment and prototype basin evolution in the Ordos Basin during the Early Permian [J]. Earth Science Frontiers, 2023, 30(2): 139-153. |
[13] | LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications [J]. Earth Science Frontiers, 2023, 30(2): 96-108. |
[14] | WANG Xiangzeng. Low permeability tight oil and gas in Yanchang area, Ordos Basin: Advances in accumulation theory and exploration practice [J]. Earth Science Frontiers, 2023, 30(1): 143-155. |
[15] | FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 20-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||