Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 244-257.DOI: 10.13745/j.esf.sf.2024.11.85
Previous Articles Next Articles
CHEN Yanyan1(), WEN Zhixin1, TAO Shizhen1,*(
), WU Wei2, LIU Xiangbai1, YANG Xiuchun3, GAO Jianrong1, LIU Qingyao4, LI Jing5, YANG Yiqing1, CHEN Yue1
Received:
2024-06-17
Revised:
2024-12-04
Online:
2025-09-25
Published:
2025-10-14
Contact:
TAO Shizhen
CLC Number:
CHEN Yanyan, WEN Zhixin, TAO Shizhen, WU Wei, LIU Xiangbai, YANG Xiuchun, GAO Jianrong, LIU Qingyao, LI Jing, YANG Yiqing, CHEN Yue. Enrichment mechanism and resource potential of helium in shale gas and coalbed methane plays: A case study of shale gas in Southern Sichuan Basin and coalbed methane in Eastern Ordos Basin[J]. Earth Science Frontiers, 2025, 32(5): 244-257.
Fig.1 The structural map of the base of the Wufeng Formation in the southern part of Sichuan with helium analysis results in the study areas. Modified after [21].
Fig.2 The location of the study area on the eastern edge of the Ordos Basin (left) and the comprehensive coal seam stratigraphic column (right). Modified after [23].
盆地 | 区块 | 层位 | CH4 含量/% | 重烃 含量/% | N2 含量/% | CO2 含量/% | He含量/ % | (3He/ 4He)/ 10-8 | 4He/20Ne | 40Ar/36Ar | He含量>0.05% 井数/总样品数 |
---|---|---|---|---|---|---|---|---|---|---|---|
四川页岩气 | 威远 | 五峰-龙马溪组 | 97.1~ 98.0 (97.7) | 0.217~ 0.956 (0.502) | 0.350~ 0.640 (0.460) | 0.840~ 1.85 (1.30) | 0.021~ 0.033 (0.026) | 1.32~ 1.88 (1.65) | 5 924~ 11 752 (9 113) | — | 0/7 |
长宁 | 97.2~ 99.0 (98.1) | 0.166~ 0.517 (0.332) | 0.260~ 0.610 (0.442) | 0.250~ 1.70 (1.04) | 0.018~ 0.051 (0.034) | 0.86~ 1.55 (1.22) | 23 346~ 32 686 (28 596) | — | 1/6 | ||
泸州 | 97.6~ 98.2 (97.9) | 0.133~ 0.328 (0.250) | 0.360~ 0.750 (0.495) | 0.980~ 1.58 (1.33) | 0.020~ 0.031 (0.026) | 0.711~ 2.40 (1.42) | 13 742~ 38 133 (29 929) | — | 0/21 | ||
大足 | 97.6~ 98.3 (98.0) | 0.219~ 0.552 (0.398) | 0.400~ 0.620 (0.505) | 0.710~ 1.35 (1.07) | 0.023~ 0.049 (0.035) | 1.19~ 1.82 (1.40) | 10 284~ 17 357 (12 438) | — | 0/8 | ||
鄂尔多斯煤层气 | 保德 | 石炭—二叠系 | 89.1~ 94.0 (92.0) | 0.010~ 0.120 (0.048) | 1.36~ 3.90 (2.64) | 1.82~ 8.94 (5.09) | 0.010~ 0.030 (0.016) | — | — | — | 0/11 |
三交北 | 78.2~ 97.0 (87.3) | 5.93~ 9.60 (7.92) | 0.127~ 4.50 (1.63) | 0~ 2.30 (0.834) | 0.023~ 0.160 (0.078) | 2.83~ 5.72 (3.59) | — | 431~ 572 (504) | 24/38 | ||
大宁-吉县 | 84.4~ 96.8 (92.0) | 0.044~ 1.19 (0.280) | 0.11~ 3.96 (0.697) | 0.542~ 6.271 (3.41) | 0.017~ 0.087 (0.038) | 1.92~ 4.59 (3.22) | — | 299~ 339 (321) | 1/26 |
Table 1 The concentrations and isotopic characteristics of He in Southern Sichuan shale gas and Eastern Ordos coalbed methane plays
盆地 | 区块 | 层位 | CH4 含量/% | 重烃 含量/% | N2 含量/% | CO2 含量/% | He含量/ % | (3He/ 4He)/ 10-8 | 4He/20Ne | 40Ar/36Ar | He含量>0.05% 井数/总样品数 |
---|---|---|---|---|---|---|---|---|---|---|---|
四川页岩气 | 威远 | 五峰-龙马溪组 | 97.1~ 98.0 (97.7) | 0.217~ 0.956 (0.502) | 0.350~ 0.640 (0.460) | 0.840~ 1.85 (1.30) | 0.021~ 0.033 (0.026) | 1.32~ 1.88 (1.65) | 5 924~ 11 752 (9 113) | — | 0/7 |
长宁 | 97.2~ 99.0 (98.1) | 0.166~ 0.517 (0.332) | 0.260~ 0.610 (0.442) | 0.250~ 1.70 (1.04) | 0.018~ 0.051 (0.034) | 0.86~ 1.55 (1.22) | 23 346~ 32 686 (28 596) | — | 1/6 | ||
泸州 | 97.6~ 98.2 (97.9) | 0.133~ 0.328 (0.250) | 0.360~ 0.750 (0.495) | 0.980~ 1.58 (1.33) | 0.020~ 0.031 (0.026) | 0.711~ 2.40 (1.42) | 13 742~ 38 133 (29 929) | — | 0/21 | ||
大足 | 97.6~ 98.3 (98.0) | 0.219~ 0.552 (0.398) | 0.400~ 0.620 (0.505) | 0.710~ 1.35 (1.07) | 0.023~ 0.049 (0.035) | 1.19~ 1.82 (1.40) | 10 284~ 17 357 (12 438) | — | 0/8 | ||
鄂尔多斯煤层气 | 保德 | 石炭—二叠系 | 89.1~ 94.0 (92.0) | 0.010~ 0.120 (0.048) | 1.36~ 3.90 (2.64) | 1.82~ 8.94 (5.09) | 0.010~ 0.030 (0.016) | — | — | — | 0/11 |
三交北 | 78.2~ 97.0 (87.3) | 5.93~ 9.60 (7.92) | 0.127~ 4.50 (1.63) | 0~ 2.30 (0.834) | 0.023~ 0.160 (0.078) | 2.83~ 5.72 (3.59) | — | 431~ 572 (504) | 24/38 | ||
大宁-吉县 | 84.4~ 96.8 (92.0) | 0.044~ 1.19 (0.280) | 0.11~ 3.96 (0.697) | 0.542~ 6.271 (3.41) | 0.017~ 0.087 (0.038) | 1.92~ 4.59 (3.22) | — | 299~ 339 (321) | 1/26 |
类型 | 盆地 | 地区 | 层位 | 深度/m | He含量/10-6 | R/Ra | 引用文献 |
---|---|---|---|---|---|---|---|
页岩气 | 四川 | 威远 | 五峰组-龙马溪组 | 1 520~1 523 | 451.4~1 286.3(869) | 0.03 | [ |
寒武系筇竹寺组 | 1 400 | 0.02 | [ | ||||
彭水 | 五峰组-龙马溪组 | 2 313~2 341 | 986~1 000(993) | 0.03 | [ | ||
焦石坝 | 五峰组-龙马溪组 | 340~620(450) | 0.004~0.03 | [ | |||
宜昌 | 寒武系 水井沱组 | 1 894.1~ 2 113.5 | 100~3 100 (1 600) | 0.04~0.08 (0.066 7) | [ | ||
煤层气 | 六盘水 | 二叠系 | 899 | 41~1 136(336) | [ | ||
鄂尔多斯 | 石西 | 二叠系太原组 | 500~2 300 (1 300) | 0.01~0.03 | [ | ||
英国 Central Scotland | Airth | 石炭系 | 892~1 059 | 1 110~2 980 (1 866) | 0.172~0.187 (0.179) | [ | |
英国 Central England | South Yorkshire | 石炭系 | 300 | 340~1 100 (672) | 0.001 9~0.042 9 (0.180) | [ | |
波兰 Lublin | 石炭系 | 4 400~19 000 (11 700) | [ | ||||
波兰 Upper Silesia | 石炭系宾夕 法尼亚亚系 | 300~3 500 (1 357) | [ | ||||
波兰 Lower Silesia | 石炭系宾夕 法尼亚亚系 | 60~3 600 (1 432) | [ | ||||
澳大利亚 Bowen | 断裂附近 | 二叠系 | 176.6~332.9 | 4 200~16 500 (7 100) | [ |
Table 2 The concentrations and isotopic characteristics of He in global shale gas and coalbed methane plays(He content>0.05%)
类型 | 盆地 | 地区 | 层位 | 深度/m | He含量/10-6 | R/Ra | 引用文献 |
---|---|---|---|---|---|---|---|
页岩气 | 四川 | 威远 | 五峰组-龙马溪组 | 1 520~1 523 | 451.4~1 286.3(869) | 0.03 | [ |
寒武系筇竹寺组 | 1 400 | 0.02 | [ | ||||
彭水 | 五峰组-龙马溪组 | 2 313~2 341 | 986~1 000(993) | 0.03 | [ | ||
焦石坝 | 五峰组-龙马溪组 | 340~620(450) | 0.004~0.03 | [ | |||
宜昌 | 寒武系 水井沱组 | 1 894.1~ 2 113.5 | 100~3 100 (1 600) | 0.04~0.08 (0.066 7) | [ | ||
煤层气 | 六盘水 | 二叠系 | 899 | 41~1 136(336) | [ | ||
鄂尔多斯 | 石西 | 二叠系太原组 | 500~2 300 (1 300) | 0.01~0.03 | [ | ||
英国 Central Scotland | Airth | 石炭系 | 892~1 059 | 1 110~2 980 (1 866) | 0.172~0.187 (0.179) | [ | |
英国 Central England | South Yorkshire | 石炭系 | 300 | 340~1 100 (672) | 0.001 9~0.042 9 (0.180) | [ | |
波兰 Lublin | 石炭系 | 4 400~19 000 (11 700) | [ | ||||
波兰 Upper Silesia | 石炭系宾夕 法尼亚亚系 | 300~3 500 (1 357) | [ | ||||
波兰 Lower Silesia | 石炭系宾夕 法尼亚亚系 | 60~3 600 (1 432) | [ | ||||
澳大利亚 Bowen | 断裂附近 | 二叠系 | 176.6~332.9 | 4 200~16 500 (7 100) | [ |
Fig.3 The relationships between R/Ra and 4He/20Ne in the shale gas in South Sichuan Basin (a) and between 40Ar/36Ar and 3He/4He in the coalbed methane in the East Ordos Basin (b)
区块 | 埋深/m | 页岩或煤 厚度/m | 含气量/ (m3·t-1) | U含量/ (μg·g-1) | Th含量/ (μg·g-1) | 产氦通量/ (cm3·g-1·a-1) | 生氦时间/ Ma | 产氦量/ (m3·t-1) | 氦气比例/ 10-6 |
---|---|---|---|---|---|---|---|---|---|
威远 | 2 000~3 500 | 200~400 | 4.2 | 9.71 | 16.5 | 1.645 71×10-12 | 442 | 0.000 727 | 173 |
长宁 | 2 300~3 200 | 300~400 | 3.27 | 17.7 | 8.97 | 2.393 92×10-12 | 442 | 0.001 058 | 324 |
泸州 | 3 540~4 625 | 300~650 | 6.8 | 17.4 | 11.8 | 2.438 96×10-12 | 442 | 0.001 078 | 158 |
大足 | 3 500~4 500 | 200~530 | 4.8 | 15.9 | 15.3 | 2.358 39×10-12 | 442 | 0.001 042 | 217 |
保德 | 300~800 | 18~32.1 | 8 | 7.11 | 25.6 | 1.139 59×10-12 | 290 | 0.000 330 | 88.0 |
三交北 | 700~1 200 | 9~18 | 17 | 4.73 | 19.1 | 1.645 71×10-12 | 290 | 0.000 727 | 19.1 |
大宁-吉县 | 1 000~2 600 | 6~15.8 | 22 | 5.16 | 18.0 | 2.393 92×10-12 | 290 | 0.001 058 | 15.0 |
Table 3 The parameters used in the helium generation amount calculation of type shale and coal
区块 | 埋深/m | 页岩或煤 厚度/m | 含气量/ (m3·t-1) | U含量/ (μg·g-1) | Th含量/ (μg·g-1) | 产氦通量/ (cm3·g-1·a-1) | 生氦时间/ Ma | 产氦量/ (m3·t-1) | 氦气比例/ 10-6 |
---|---|---|---|---|---|---|---|---|---|
威远 | 2 000~3 500 | 200~400 | 4.2 | 9.71 | 16.5 | 1.645 71×10-12 | 442 | 0.000 727 | 173 |
长宁 | 2 300~3 200 | 300~400 | 3.27 | 17.7 | 8.97 | 2.393 92×10-12 | 442 | 0.001 058 | 324 |
泸州 | 3 540~4 625 | 300~650 | 6.8 | 17.4 | 11.8 | 2.438 96×10-12 | 442 | 0.001 078 | 158 |
大足 | 3 500~4 500 | 200~530 | 4.8 | 15.9 | 15.3 | 2.358 39×10-12 | 442 | 0.001 042 | 217 |
保德 | 300~800 | 18~32.1 | 8 | 7.11 | 25.6 | 1.139 59×10-12 | 290 | 0.000 330 | 88.0 |
三交北 | 700~1 200 | 9~18 | 17 | 4.73 | 19.1 | 1.645 71×10-12 | 290 | 0.000 727 | 19.1 |
大宁-吉县 | 1 000~2 600 | 6~15.8 | 22 | 5.16 | 18.0 | 2.393 92×10-12 | 290 | 0.001 058 | 15.0 |
[1] | U.S. Geological Survey. Mineral commodity summaries 2022[R]. Reston: U.S. Geological Survey, 2022: 79-80. |
[2] | 唐金荣, 张宇轩, 周俊林, 等. 全球氦气产业链分析与中国应对策略[J]. 地质通报, 2023, 42(1): 1-13. |
[3] | DAI J X, ZOU C N, DONG D Z, et al. Geochemical characteristics of marine and terrestrial shale gas in China[J]. Marine and Petroleum Geology, 2016, 76: 444-463. |
[4] | 李剑, 王晓波, 侯连华, 等. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1093-1106. |
[5] | 刘全有, 戴金星, 金之钧, 等. 塔里木盆地前陆区和台盆区天然气的地球化学特征及成因[J]. 地质学报, 2009, 83(1): 107-114. |
[6] | 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041. |
[7] | 何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 44(1): 1-10. |
[8] | 刘超, 孙蓓蕾, 曾凡桂, 等. 鄂尔多斯盆地东缘石西区块含氦天然气的发现及成因初探[J]. 煤炭学报, 2021, 46(4): 1280-1287. |
[9] | 冯子辉, 霍秋立, 王雪. 松辽盆地北部氦气成藏特征研究[J]. 天然气工业, 2001, 21(5): 27-30. |
[10] | DAI J X, NI Y Y, QIN S F, et al. Geochemical characteristics of He and CO2 from the Ordos (cratonic) and Bohai bay (rift) basins in China[J]. Chemical Geology, 2017, 469: 192-213. |
[11] | 徐永昌, 沈平, 陶明信, 等. 中国含油气盆地天然气中氦同位素分布[J]. 科学通报, 1994, 39(16): 1505-1508. |
[12] | 张驰, 关平, 张济华, 等. 中国氦气资源分区特征与成藏模式[J]. 天然气地球科学, 2023, 34(4): 656-671. |
[13] | 李玉宏, 卢进才, 李金超, 等. 渭河盆地富氦天然气井分布特征与氦气成因[J]. 吉林大学学报(地球科学版), 2011, 41(增刊1): 47-53. |
[14] | 李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏: 以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501. |
[15] | 陶士振, 杨怡青, 陈悦, 等. 氦气资源形成地质条件、成因机理与富集规律[J]. 石油勘探与开发, 2024, 51(2): 436-452. |
[16] | 秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理: 古老地层水脱氦富集[J]. 天然气地球科学, 2022, 33(8): 1203-1217. |
[17] | 刘凯旋, 陈践发, 付娆, 等. 富氦天然气藏成藏特征及主控因素[J]. 石油学报, 2022, 43(11): 1652-1663. |
[18] | 陈践发, 刘凯旋, 董勍伟, 等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学, 2021, 32(10): 1436-1449. |
[19] | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
[20] | 刘树根, 邓宾, 孙玮, 等. 四川盆地: 周缘活动主控下形成的叠合盆地[J]. 地质科学, 2018, 53(1): 308-326. |
[21] | 陈更生, 石学文, 刘勇, 等. 四川盆地南部地区五峰组: 龙马溪组深层页岩气富集控制因素新认识[J]. 天然气工业, 2024, 44(1): 58-71. |
[22] | 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018, 38(10): 1-10. |
[23] | 杨秀春, 徐凤银, 王虹雅, 等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探, 2022, 50(3): 30-41. |
[24] | 曹春辉. 四川盆地志留系龙马溪组页岩气产出过程中气体地球化学特征及意义[D]. 兰州: 兰州大学, 2021. |
[25] | 顾希, 贺怀宇, 陈立辉, 等. 南京六合塔山地幔橄榄岩捕虏体中的稀有气体同位素组成[J]. 地球化学, 2020, 49(5): 494-508. |
[26] | BALLENTINE C J, SHERWOOD LOLLAR B. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA[J]. Geochimica et Cosmochimica Acta, 2002, 66(14): 2483-2497. |
[27] | 徐永昌, 沈平, 陶明信, 等. 东部油气区天然气中幔源挥发份的地球化学: Ⅰ.氦资源的新类型: 沉积壳层幔源氦的工业储集[J]. 中国科学(D辑): 地球科学, 1996, 26(1): 1-8. |
[28] | LIU R, WEN T, AMALBERTI J, et al. The dichotomy in noble gas signatures linked to tectonic deformation in Wufeng-Longmaxi Shale, Sichuan Basin[J]. Chemical Geology, 2021, 581: 120412. |
[29] | 罗胜元, 陈孝红, 刘安, 等. 中扬子宜昌地区下寒武统水井沱组页岩气地球化学特征及其成因[J]. 石油与天然气地质, 2019, 40(5): 999-1010. |
[30] | GYÖRE D, MCKAVNEY R, GILFILLAN S M V, et al. Fingerprinting coal-derived gases from the UK[J]. Chemical Geology, 2018, 480: 75-85. |
[31] | KINNON E C P, GOLDING S D, BOREHAM C J, et al. Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia[J]. International Journal of Coal Geology, 2010, 82(3): 219-231. |
[32] | KOTARBA M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins, Poland[J]. Organic Geochemistry, 2001, 32(1): 163-180. |
[33] | KOTARBA M J, RICE D D. Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland[J]. Applied Geochemistry, 2001, 16(7): 895-910. |
[34] | 陈新军, 陈刚, 边瑞康, 等. 四川盆地涪陵页岩气田氦气资源潜力与成因机理[J]. 天然气地球科学, 2023, 34(3): 469-476. |
[35] | CHEN B. Evolution of coalbed methane: insights from stable and noble gas isotopes[D]. Galasgow: University of Galasgow, 2021. |
[36] | CAO C H., ZHANG M J, TANG Q Y, et al. Noble gas isotopic variations and geological implication of Longmaxi shale gas in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 38-46. |
[37] | O’NIONS R K, OXBURGH E R. Helium, volatile fluxes and the development of continental crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 331-347. |
[38] | 徐永昌, 沈平, 陶明信, 等. 幔源氦的工业储聚和郯庐大断裂带[J]. 科学通报, 1990, 35(12): 932-935. |
[39] | BALLENTINE C J, BURGESS R, MARTY B. Tracing fluid origin, transport and Interaction in the crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 539-614. |
[40] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
[41] | DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74(1): 3-12. |
[42] | 聂海宽, 刘全有, 党伟, 等. 页岩型氦气富集机理与资源潜力: 以四川盆地五峰组-龙马溪组为例[J]. 中国科学: 地球科学, 2023, 53(6): 1285-1294. |
[43] | KOTARBA M J, NAGAO K, KARNKOWSKI P H. Origin of gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen in Carboniferous and Permian strata of the distal part of the Polish Basin: geological and isotopic approach[J]. Chemical Geology, 2014, 383: 164-179. |
[44] | CHEN B Y, STUART F M, XU S, et al. Evolution of coal-bed methane in Southeast Qinshui Basin, China: insights from stable and noble gas isotopes[J]. Chemical Geology, 2019, 529: 119298. |
[45] | BROWN A. Formation of high helium gases: a guide for explorationists[C]// Proceedings of American Association of Petroleum Geologists Convention. New Orleans, Louisiana: Search and Discovery, 2010. |
[46] | 蒙炳坤, 周世新, 李靖, 等. 上扬子地区不同类型岩石生氦潜力评价及泥页岩氦气开采条件理论计算[J]. 矿物岩石, 2021, 41(4): 102-113. |
[47] | 任德贻, 赵峰华, 代世峰, 等. 煤的微量元素地球化学[M]. 北京: 科学出版社, 2006: 1-556 |
[48] | 孙彩蓉. 鄂尔多斯盆地东缘石炭—二叠系页岩沉积相及微量元素地球化学研究[D]. 北京: 中国地质大学(北京), 2018. |
[49] | 何龙, 王云鹏, 陈多福. 川南地区晚奥陶—早志留世沉积环境与古气候的地球化学特征[J]. 地球化学, 2019, 48(6): 555-566. |
[50] | 秦胜飞, 陶刚, 罗鑫, 等. 氦气富集与天然气成藏差异、勘探误区[J]. 天然气工业, 2023, 43(12): 138-151. |
[51] | 张文. 关中和柴北缘地区战略性氦气资源成藏机理研究[D]. 北京: 中国矿业大学(北京), 2019. |
[52] | 秦胜飞, 李济远, 王佳美, 等. 中国含油气盆地富氦天然气藏氦气富集模式[J]. 天然气工业, 2022, 42(7): 125-134. |
[53] | 陈孝红, 危凯, 张保民, 等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 2018, 45(2): 207-226. |
[54] | 丁江燕, 张新军, 曹志勇. 山西省临县紫金山地区U、Th、K三种放射性元素特征分析[J]. 科学技术与工程, 2020, 20(9): 3460-3464. |
[55] | BROWN A. Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-406. |
[56] | 孙泽祥. 低渗透性孔隙介质储层物性应力敏感性表征及气体传输机制研究[D]. 北京: 中国科学院大学, 2021. |
[57] | SUN Z X, LI P P, ZHOU S X. A laboratory observation for gases transport in shale nanochannels: helium, nitrogen, methane, and helium-methane mixture[J]. Chemical Engineering Journal, 2023, 472: 144939. |
[58] | 张梦琳, 李郭琴, 何嘉, 等. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151. |
[59] | 邹才能, 陶士振, 侯连华, 等. 非常规油气地质学[M]. 北京: 地质出版社, 2014: 1-313. |
[60] | 吕梁市人民政府. 吕梁市非常规天然气“十四五”发展规划[EB/OL]. (2021-11-20)[2024-10-20]. http://www.lvliang.gov.cn/llxxgk/zfxxgk/xxgkml/ghjh_21562/202112/t20211224_1604743.html. |
[1] | WANG Wurong, LIU Xianyang, YUE Dali, WAN Xiaolong, LIU Ruijing, LI Shixiang, LU Hao, LIU Jian, WU Guangzhen, WU Shenghe. Distribution of quality difference of tight sandstone reservoirs in sublacustrine fan of depression lacustrine basin: A case study of Chang 6 oil-bearing interval of Yanchang Formation in Heshui area, Ordos Basin, China [J]. Earth Science Frontiers, 2025, 32(5): 190-204. |
[2] | YANG Yiqing, TAO Shizhen, LI Jian, YANG Wei, CHEN Yue, GAO Jianrong, WANG Xiaobo, CHEN Yanyan, LIU Xiangbai. The static geological elements and dynamic processes of the helium-bearing systems [J]. Earth Science Frontiers, 2025, 32(5): 230-243. |
[3] | LIU Xiangbai, TAO Shizhen, YANG Dailin, XIE Wuren, ZHAO Rongrong, TIAN Xingwang, WANG Yunlong, GAO Jianrong, LIU Zhuangxiaoxue, LI Chaozheng, SONG Zezhang, CHEN Yanyan, YANG Yiqing, CHEN Yue. Breakthrough in exploration of helium rich natural gas in Well Datan 1 of Sichuan Basin and main control factors for reservoir formation [J]. Earth Science Frontiers, 2025, 32(5): 258-277. |
[4] | CHEN Gengrong, LI Jing, SUN Dong, ZHOU Shixin, LIU Liangliang, WANG Hao, PANG Wenjun, WU Yuhang. Cause of helium-poor in Anyue gas field, Sichuan Basin [J]. Earth Science Frontiers, 2025, 32(5): 278-289. |
[5] | CHEN Youzhi, ZANG Dianguang, HU Gang, FENG Xukui, WANG Xiaoyang, XIAO Dong, CHEN Ying, XU Min, LIANG Hong, WU Yulin, CHEN Hui, GUO Haiyang, ZHAO Zhenwei, GUO Shuang, ZHOU Yuezong, TAO Jun. Tectonic framework and oil-gas geological significance of Late Permian Changxing Period in Sichuan Basin [J]. Earth Science Frontiers, 2025, 32(5): 28-37. |
[6] | XU Zhusong, LI Jian, WANG Xiaobo, CUI Huiying, TIAN Jixian, GUO Jianying, LI Wanting, XIA Yutian, TAO Shizhen, CHEN Dawei. Helium accumulation regulations and prediction of favorable areas in the Qaidam Basin [J]. Earth Science Frontiers, 2025, 32(5): 290-307. |
[7] | WAN Xiaolong, WU Shenghe, ZHOU Xinping, XU Zhenhua, FU Jinhua, WANG Zifeng, MA Shuwei, WU Degang, LI Zhen, LIU Mingcheng. Research on the prediction method of 3D reservoir sweet spots distribution of shale oil in shale intercalated layer: A case from the Yanchang Formation of B15 block, Ordos Basin [J]. Earth Science Frontiers, 2025, 32(5): 417-431. |
[8] | WANG Bin, ZHOU Mingling, DING Zhengjiang, ZHANG Qibin, LIU Xiangdong, LÜ Junyang, ZHOU Xiaoping. Tectonic controls and 3D deep exploration targeting of altered rock-type gold deposits in the northwestern Jiaodong Peninsula, China [J]. Earth Science Frontiers, 2025, 32(4): 140-154. |
[9] | WU Yiping, WANG Jianjun, TAO Shizhen, WANG Qing, LEI Zhanxiang, LI Qian, ZHANG Ningning, WANG Xiaobo, YANG Yiqing. Research on helium charging and accumulation mechanism in Rukwa Rift Basin in Tanzania [J]. Earth Science Frontiers, 2025, 32(2): 261-276. |
[10] | ZHU Ziguang, ZHU Guangyou, LI Xi. The enrichment mechanism of U element in black shale and its significant influence on the performance of organic matter oil and gas production [J]. Earth Science Frontiers, 2025, 32(2): 290-310. |
[11] | ZHANG Yifan, LIU Haiyan, DONG Shu, GUO Huaming, WANG Zhen, SUN Zhanxue, ZHOU Zhongkui. Geochemical characteristics of rare earth elements in acid mine drainage and sediments from the Xiangshan uranium mine tailings area [J]. Earth Science Frontiers, 2025, 32(2): 412-429. |
[12] | WNAG Xueqiu, LI Longxue, WU Hui, WANG Wei. Super enrichment of critical elements: Implications for stratgic mineral resources [J]. Earth Science Frontiers, 2025, 32(1): 11-22. |
[13] | HONG Jun, Tahseenullah KHAN, LI Wenyuan, Yasir Shaheen KHALIL, MA Zhongping, ZHANG Jing, WANG Zhihua, ZHANG Huishan, ZHANG Haidi, LIU Chang, Asad Ali NAREJO. Geochemical distribution of Li/Be in Pakistan: Implications for Li/Be prospecting [J]. Earth Science Frontiers, 2025, 32(1): 127-141. |
[14] | WU Fafu, ZHAO Kai, SONG Song, LUO Junqiang, ZHANG Huishan, YU Wenming, LIU Jiangtao, CHENG Xiang, LIU Hao, ZENG Xiongwei, HE Yaoyan, XIANG Peng, WANG Jianxiong, HU Peng. Geochemical distribution of Pb and Zn in the Eastern High Atlas, Morocco: Implications for Pb-Zn ore prospecting [J]. Earth Science Frontiers, 2025, 32(1): 162-182. |
[15] | ZENG Zhaoyang, NING Shuzheng, WANG Ziguo. Strategic mineral resources in coal: A case study on gallium and germanium [J]. Earth Science Frontiers, 2024, 31(6): 331-349. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||