Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 404-416.DOI: 10.13745/j.esf.sf.2025.7.17
Previous Articles Next Articles
YIN Senlin1(), LIN Shaoling1, HU Zhangming2,*(
), ZHAO Junwei1, YANG Yingtao3, ZHANG Ling3, CHEN Gongyang1, CHEN Weichang4
Received:
2024-06-10
Revised:
2024-12-21
Online:
2025-09-25
Published:
2025-10-14
Contact:
HU Zhangming
CLC Number:
YIN Senlin, LIN Shaoling, HU Zhangming, ZHAO Junwei, YANG Yingtao, ZHANG Ling, CHEN Gongyang, CHEN Weichang. 3D model of mineral interior tight sandstone reservoir and distribution of fracture dessert: Taking 2nd Xujiahe Formation outcrop section in western Sichuan Basin as an example[J]. Earth Science Frontiers, 2025, 32(5): 404-416.
序号 | 钾长石 含量/ % | 石英 含量/ % | 斜长石 含量/ % | 白云石 含量/ % | 方解石 含量/ % | 铁白 云石 含量/% | 硅质类 矿物 含量/% | 钙质类 矿物 含量/% | 黏土 矿物 含量/% | 单位面积 裂缝条数/ cm2 | 单位面积 裂缝长度/ (mm·cm-2) | 裂缝 宽度/ μm | 孔隙度/ % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.88 | 25.21 | 1.03 | 10.39 | 58.11 | 0.55 | 27.12 | 69.05 | 2.32 | 804 | 518.73 | 388.52 | 1.49 |
2 | 0.85 | 21.74 | 0.88 | 2.07 | 69.86 | 0.28 | 23.47 | 72.21 | 2.61 | 1 500 | 459.63 | 154.85 | 3.43 |
3 | 0.65 | 28.4 | 0.64 | 11.84 | 55.66 | 0.16 | 29.69 | 67.66 | 1.93 | 400 | 405.01 | 662.9 | 1.13 |
4 | 0.94 | 34.37 | 0.82 | 14.2 | 44.07 | 0.12 | 36.13 | 58.39 | 4.25 | 459 | 407.49 | 579.44 | 1.86 |
5 | 0.76 | 26.69 | 0.67 | 10.95 | 57.67 | 0.22 | 28.12 | 68.84 | 2.06 | 348 | 430.79 | 833.17 | 1.61 |
6 | 0.83 | 26.4 | 0.72 | 11.27 | 57.75 | 0.16 | 27.95 | 69.18 | 2.11 | 762 | 491.89 | 386.22 | 1.48 |
7 | 1.3 | 37.45 | 0.79 | 9.62 | 44.33 | 0.17 | 39.54 | 54.12 | 4.92 | 717 | 356.82 | 278.48 | 3.48 |
8 | 1.16 | 40.66 | 0.98 | 7.98 | 40.98 | 0.16 | 42.8 | 49.12 | 6.58 | 735 | 419.94 | 341.16 | 1.83 |
9 | 1.03 | 31.79 | 0.81 | 12.31 | 42.62 | 0.07 | 33.63 | 55 | 9.3 | 1 014 | 364.79 | 173.51 | 5.33 |
10 | 1.38 | 30.22 | 0.74 | 6.14 | 54.31 | 0.4 | 32.34 | 60.85 | 5.18 | 1 088 | 398.27 | 186.49 | 7.7 |
11 | 1.05 | 26.25 | 0.73 | 10.63 | 56.87 | 0.34 | 28.03 | 67.84 | 3.21 | 332 | 430.39 | 894.08 | 1.19 |
12 | 1.22 | 30.55 | 0.85 | 11.8 | 50 | 0.19 | 32.62 | 61.99 | 4.23 | 456 | 474.83 | 691.66 | 1.49 |
13 | 1.1 | 30.75 | 0.89 | 12.95 | 48.6 | 0.13 | 32.74 | 61.68 | 4.34 | 439 | 423.57 | 632.84 | 1.5 |
14 | 0.46 | 25 | 0.49 | 9.98 | 58.99 | 0.07 | 25.95 | 69.04 | 4.05 | 383 | 391.66 | 693.03 | 1.16 |
15 | 1.24 | 23.39 | 0.79 | 7.67 | 62.79 | 0.18 | 25.42 | 70.64 | 2.98 | 231 | 385.88 | 1 201.39 | 1.12 |
16 | 2 | 24.46 | 0.83 | 6.89 | 51.39 | 0.78 | 27.29 | 59.06 | 8.35 | 472 | 428.36 | 584.89 | 1.27 |
17 | 1.32 | 26.77 | 0.86 | 9.78 | 55.94 | 0.16 | 28.95 | 65.88 | 4 | 353 | 426.62 | 836.34 | 1.41 |
18 | 1.3 | 30.96 | 0.52 | 0.36 | 58.92 | 0.16 | 32.78 | 59.44 | 5.83 | 1 493 | 449.33 | 144.3 | 3.91 |
19 | 0.3 | 24.35 | 0.4 | 7.74 | 61.8 | 0.06 | 25.05 | 69.6 | 4.52 | 549 | 452.42 | 519.44 | 1.47 |
20 | 0.97 | 27.69 | 0.81 | 10.37 | 56.14 | 0.16 | 29.47 | 66.67 | 3.03 | 361 | 417.64 | 798.18 | 1.22 |
Table 1 Analysis and test data sheets of part samples
序号 | 钾长石 含量/ % | 石英 含量/ % | 斜长石 含量/ % | 白云石 含量/ % | 方解石 含量/ % | 铁白 云石 含量/% | 硅质类 矿物 含量/% | 钙质类 矿物 含量/% | 黏土 矿物 含量/% | 单位面积 裂缝条数/ cm2 | 单位面积 裂缝长度/ (mm·cm-2) | 裂缝 宽度/ μm | 孔隙度/ % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.88 | 25.21 | 1.03 | 10.39 | 58.11 | 0.55 | 27.12 | 69.05 | 2.32 | 804 | 518.73 | 388.52 | 1.49 |
2 | 0.85 | 21.74 | 0.88 | 2.07 | 69.86 | 0.28 | 23.47 | 72.21 | 2.61 | 1 500 | 459.63 | 154.85 | 3.43 |
3 | 0.65 | 28.4 | 0.64 | 11.84 | 55.66 | 0.16 | 29.69 | 67.66 | 1.93 | 400 | 405.01 | 662.9 | 1.13 |
4 | 0.94 | 34.37 | 0.82 | 14.2 | 44.07 | 0.12 | 36.13 | 58.39 | 4.25 | 459 | 407.49 | 579.44 | 1.86 |
5 | 0.76 | 26.69 | 0.67 | 10.95 | 57.67 | 0.22 | 28.12 | 68.84 | 2.06 | 348 | 430.79 | 833.17 | 1.61 |
6 | 0.83 | 26.4 | 0.72 | 11.27 | 57.75 | 0.16 | 27.95 | 69.18 | 2.11 | 762 | 491.89 | 386.22 | 1.48 |
7 | 1.3 | 37.45 | 0.79 | 9.62 | 44.33 | 0.17 | 39.54 | 54.12 | 4.92 | 717 | 356.82 | 278.48 | 3.48 |
8 | 1.16 | 40.66 | 0.98 | 7.98 | 40.98 | 0.16 | 42.8 | 49.12 | 6.58 | 735 | 419.94 | 341.16 | 1.83 |
9 | 1.03 | 31.79 | 0.81 | 12.31 | 42.62 | 0.07 | 33.63 | 55 | 9.3 | 1 014 | 364.79 | 173.51 | 5.33 |
10 | 1.38 | 30.22 | 0.74 | 6.14 | 54.31 | 0.4 | 32.34 | 60.85 | 5.18 | 1 088 | 398.27 | 186.49 | 7.7 |
11 | 1.05 | 26.25 | 0.73 | 10.63 | 56.87 | 0.34 | 28.03 | 67.84 | 3.21 | 332 | 430.39 | 894.08 | 1.19 |
12 | 1.22 | 30.55 | 0.85 | 11.8 | 50 | 0.19 | 32.62 | 61.99 | 4.23 | 456 | 474.83 | 691.66 | 1.49 |
13 | 1.1 | 30.75 | 0.89 | 12.95 | 48.6 | 0.13 | 32.74 | 61.68 | 4.34 | 439 | 423.57 | 632.84 | 1.5 |
14 | 0.46 | 25 | 0.49 | 9.98 | 58.99 | 0.07 | 25.95 | 69.04 | 4.05 | 383 | 391.66 | 693.03 | 1.16 |
15 | 1.24 | 23.39 | 0.79 | 7.67 | 62.79 | 0.18 | 25.42 | 70.64 | 2.98 | 231 | 385.88 | 1 201.39 | 1.12 |
16 | 2 | 24.46 | 0.83 | 6.89 | 51.39 | 0.78 | 27.29 | 59.06 | 8.35 | 472 | 428.36 | 584.89 | 1.27 |
17 | 1.32 | 26.77 | 0.86 | 9.78 | 55.94 | 0.16 | 28.95 | 65.88 | 4 | 353 | 426.62 | 836.34 | 1.41 |
18 | 1.3 | 30.96 | 0.52 | 0.36 | 58.92 | 0.16 | 32.78 | 59.44 | 5.83 | 1 493 | 449.33 | 144.3 | 3.91 |
19 | 0.3 | 24.35 | 0.4 | 7.74 | 61.8 | 0.06 | 25.05 | 69.6 | 4.52 | 549 | 452.42 | 519.44 | 1.47 |
20 | 0.97 | 27.69 | 0.81 | 10.37 | 56.14 | 0.16 | 29.47 | 66.67 | 3.03 | 361 | 417.64 | 798.18 | 1.22 |
井号 | 测试层位 | 测试方式 | 流压/ MPa | 产气量/ (104 m3·d-1) | 产水量/ (104 m3·d-1) | 无阻流量/ (104 m3·d-1) | 试气结论 |
---|---|---|---|---|---|---|---|
新场6井 | 须二段2砂组 | 射孔 | 70.64 | 3.79 | 120.96 | 24.05 | 低产含气水层 |
新场8井 | 须二段2、3砂组 | 中途测试 | 25.06 | 33.21 | 工业气层 | ||
新场10井 | 须二段4砂组 | 射孔 | 38.77 | 10.33 | 1.15 | 13.38 | 低产含气水层 |
Table 2 Drilling test and gas test conclusion
井号 | 测试层位 | 测试方式 | 流压/ MPa | 产气量/ (104 m3·d-1) | 产水量/ (104 m3·d-1) | 无阻流量/ (104 m3·d-1) | 试气结论 |
---|---|---|---|---|---|---|---|
新场6井 | 须二段2砂组 | 射孔 | 70.64 | 3.79 | 120.96 | 24.05 | 低产含气水层 |
新场8井 | 须二段2、3砂组 | 中途测试 | 25.06 | 33.21 | 工业气层 | ||
新场10井 | 须二段4砂组 | 射孔 | 38.77 | 10.33 | 1.15 | 13.38 | 低产含气水层 |
[1] | 段金宝, 张升磊, 李平平, 等. 四川盆地北部须家河组裂缝发育特征与控制因素:以广元和旺苍地区地表露头为例[J]. 长江大学学报(自科版), 2016, 13(23): 7-14. |
[2] | 刘忠群, 徐士林, 刘君龙, 等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020, 40(2): 31-40. |
[3] | 刘君龙, 胡宗全, 刘忠群, 等. 四川盆地川西坳陷新场须家河组二段气藏甜点模式及形成机理[J]. 石油与天然气地质, 2021, 42(4): 852-862. |
[4] | 于兴河, 李顺利, 杨志浩. 致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1): 1-13. |
[5] | 施振生, 李熙喆, 董大忠, 等. 致密砂岩储层成岩作用与孔隙演化: 以川西南上三叠统为例[J]. 地学前缘, 2018, 25(2): 179-190. |
[6] | 丁文龙, 尹帅, 王兴华, 等. 致密砂岩气储层裂缝评价方法与表征[J]. 地学前缘, 2015, 22(4): 173-187. |
[7] | 李王鹏, 刘忠群, 胡宗全, 等. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素[J]. 石油与天然气地质, 2021, 42(4): 884-897. |
[8] | 黄彦庆, 刘忠群, 王爱, 等. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30. |
[9] | LI Y, CHEN S J, QIU W, et al. Controlling factors for the accumulation and enrichment of tight sandstone gas in the Xujiahe Formation, Guang’an Area, Sichuan Basin[J]. Energy Exploration & Exploitation, 2019, 37(1) :26-33. |
[10] | 潘磊, 杜红权, 李雷涛, 等. 川东北元坝地区上三叠统须家河组天然裂缝发育特征与主控因素[J]. 地学前缘, 2024, 31(5): 156-165. |
[11] | 董少群, 曾联波, 冀春秋, 等. 超深层致密砂岩裂缝测井识别深度核方法[J]. 地学前缘, 2024, 31(5): 166-176. |
[12] | 李云涛, 丁文龙, 韩俊, 等. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287. |
[13] | 韩鹏远, 丁文龙, 杨德彬, 等. 塔河油田奥陶系碳酸盐岩储层裂缝表征与主控因素分析[J]. 地学前缘, 2024, 31(5): 209-226. |
[14] | 朱筱敏, 潘荣, 朱世发, 等. 致密储层研究进展和热点问题分析[J]. 地学前缘, 2018, 25(2): 141-146. |
[15] | STROKER T M, HARR1S N B, ELLIOTT W C, et al. Diagenesis of a tight gas sand reservoir: Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado[J]. Marine and Petroleum Geology, 2013, 40: 48-68. |
[16] | NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340. |
[17] | OLSON J E, LAUBACH S E, LANDER R H. Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535-1549. |
[18] | ZHOU C N, YANG Z, TAO S Z, et al. Continuous hydro-carbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: the Ordos Basin, North-Central China[J]. Earth-Science Reviews, 2013, 126: 358-369. |
[19] | 曹晶晶. 致密砂岩储层构型研究:以广元工农镇须家河组野外露头为例[D]. 成都: 成都理工大学, 2020. |
[20] | 印森林, 陈恭洋, 张玲, 等. 岩相构型对致密砂岩优质储层的控制作用:以川西坳陷须二段为例[J]. 天然气地球科学, 2016, 27(7):1179-1189. |
[21] | YUE D L, WU S H, XU Z Y, et al. Reservoir quality, natural fractures, and gas productivity of upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89(2): 370-386. |
[22] | 印森林, 陈恭洋, 刘兆良, 等. 基于无人机倾斜摄影的三维数字露头表征技术[J]. 沉积学报, 2018, 36(1): 72-80. |
[23] | 印森林, 谭媛元, 张磊, 等. 基于无人机倾斜摄影的三维露头地质建模:以山西吕梁市坪头乡剖面为例[J]. 古地理学报, 2018, 20(5): 909-924. |
[24] | 印森林, 高阳, 胡张明, 等. 基于无人机倾斜摄影的露头多点地质统计模拟:以山西吕梁坪头乡石盒子组为例[J]. 石油学报, 2021, 42(2): 198-216. |
[25] | 王洛锋, 王功文, 许文辉, 等. 智能矿山大数据的地学信息挖掘与知识发现:以河南上房沟钼(铁)5G+矿山为例[J]. 地学前缘, 2023, 30(4): 317-334. |
[26] | YIN S L, FENG K Y, NIE X, et al. Characterization of marine shale in Western Hubei Province based on unmanned aerial vehicle oblique photographic data[J]. Geo-Energy Research, 2022, 6(3): 252-263. |
[27] | YIN S L, ZHU B Y, GUO H P, et al. Architectural model of a dryland gravel braided river, based on 3D UAV oblique photogrammetric data: a case study of West Dalongkou river in eastern Xinjiang, China[J]. Acta Geologica Sinica (English Edition), 2023, 97(1): 269-285. |
[28] | 王珂, 张荣虎, 李宝刚, 等. 致密砂岩储层构造裂缝特征及地质建模:以塔里木盆地库车坳陷大北12气藏为例[J]. 海相油气地质, 2023, 28(1): 72-82. |
[29] | 董少群, 吕文雅, 夏东领, 等. 致密砂岩储层多尺度裂缝三维地质建模方法[J]. 石油与天然气地质, 2020, 41(3): 627-637. |
[30] | 刘剑锋, 王鹏, 毛庆辉, 等. 基于不同尺度的储层裂缝建模方法对比[J]. 地球物理学进展, 2023, 38(5): 2071-2079. |
[31] | SALAZAR JJ, OCHOA J, GARLAND L, et al. Spatial data analytics-assisted subsurface modeling: a duvernay case study[J]. Petrophysics, 2023, 64(2): 287-302. |
[32] | 刘昭茜, 罗开平, 唐永, 等. 四川盆地元坝-通南巴地区关键构造期构造特征及陆相致密砂岩天然气成藏响应[J]. 地球科学, 2019, 44(3): 756-772. |
[33] | HE D, DUAN X G, LI S M, et al. Impact of depositional environment and diagenesis on the Upper Triassic Xujiahe tight-sand reservoir in Guang’an area, Central Sichuan Basin, SW China[J]. Carbonates and Evaporites, 2019, 34(2): 219-232. |
[34] | 叶素娟, 李嵘, 杨克明, 等. 川西坳陷叠覆型致密砂岩气区储层特征及定量预测评价[J]. 石油学报, 2015, 36(12): 1484-1494. |
[35] | 余瑜, 林良彪, 李真, 等. 致密砂岩碳酸盐矿物SEM-CL和EPMA矿物学表征及其成岩意义:以川西坳陷须家河组为例[J]. 沉积学报, 2023, 41(5): 1468-1477. |
[36] | 陈磊, 姜振学, 纪文明, 等. 川西坳陷上三叠统须五段陆相页岩气储集层矿物成分特征及其意义[J]. 矿物岩石地球化学通报, 2016, 35(4): 750-755. |
[1] | WANG Wurong, LIU Xianyang, YUE Dali, WAN Xiaolong, LIU Ruijing, LI Shixiang, LU Hao, LIU Jian, WU Guangzhen, WU Shenghe. Distribution of quality difference of tight sandstone reservoirs in sublacustrine fan of depression lacustrine basin: A case study of Chang 6 oil-bearing interval of Yanchang Formation in Heshui area, Ordos Basin, China [J]. Earth Science Frontiers, 2025, 32(5): 190-204. |
[2] | HE Xiao, NIU Huapeng, ZHAO Xian, ZHOU Haoyan, LIN Weijun, ZHANG Guanlong, MENG Tao, MU Xing. Numerical simulation method on the impact of the difference of rock composition and structure on the development mechanism of fractured reservoirs: A case study from the granitoids in Jiyang Depression [J]. Earth Science Frontiers, 2025, 32(5): 361-376. |
[3] | QU Linbo, YUE Dali, WANG Wurong, JIN Wujun, LAI Hechuan, WU Qingzhao, LIAO Changzhen, FU Jialin, ZHANG Jiarui, LI Wei. Variable rock-electrical saturation model for dual-medium tight sandstones: A case from the second member of the Upper Triassic Xujiahe Formation, Western Sichuan Depression [J]. Earth Science Frontiers, 2025, 32(5): 377-388. |
[4] | ZHANG Tao, LI Yanping, LI Zekai, LIU Dongcheng, WANG Jing. Fractures identification of deep tight reservoir with well logging based on Improved Long Short-Term Memory neural network [J]. Earth Science Frontiers, 2025, 32(5): 456-465. |
[5] | HU Jinghong, LIAO Songze, CAI Yidong, LU Jun. Study of fracture propagation uniformity in deep shale reservoir [J]. Earth Science Frontiers, 2025, 32(4): 471-482. |
[6] | LI Fenglei, LIN Chengyan, WANG Jiao, REN Lihua, ZHANG Guoyin, ZHU Yongfeng, LI Shiyin, ZHANG Yintao, GUAN Baozhu. Structure analysis and intelligent prediction of carbonate fractured-vuggy reservoirs in ultra-deep fracture zone [J]. Earth Science Frontiers, 2025, 32(2): 311-331. |
[7] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[8] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[9] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[10] | JU Wei, YANG Hui, HOU Guiting, NING Weike, LI Yongkang, LIANG Xiaobai. Development and distribution pattern of fault-controlled fractures in complex structural deformation zones [J]. Earth Science Frontiers, 2024, 31(5): 130-138. |
[11] | YIN Shuai, ZHANG Ziyang, ZHANG Xingxing, WANG Jingchen, HU Wei, DING Wenlong, LI Hu. Fracture development mode in fan delta front unconventional tight oil reservoirs: A case study of Paleogene He-3 in southeastern Biyang Depression [J]. Earth Science Frontiers, 2024, 31(5): 139-155. |
[12] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[13] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[14] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[15] | ZHANG Hui, ZHANG Guanjie, XU Ke, YIN Guoqing, WANG Zhimin, LUO Yang, WANG Haiying, ZHANG Binxin, LIANG Jingrui, YUAN Fang, ZHAO Wei, ZHANG Wei, LU Xing. Characteristics of stress state transitions and its geological and mechanical response in the Kuqa Depression [J]. Earth Science Frontiers, 2024, 31(5): 177-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||