Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 35-48.DOI: 10.13745/j.esf.sf.2021.2.12
Previous Articles Next Articles
HAN Zhihui(), MA Teng*(), SHEN Shuai, DU Yao, WU Xiancang, LIU Wenhui
Received:
2020-04-29
Revised:
2020-10-12
Online:
2021-09-25
Published:
2021-10-29
Contact:
MA Teng
CLC Number:
HAN Zhihui, MA Teng, SHEN Shuai, DU Yao, WU Xiancang, LIU Wenhui. Distribution characteristics and influencing factors of poor-quality native groundwater in river percolation system in the lower reaches of the Hanjiang Rive[J]. Earth Science Frontiers, 2021, 28(5): 35-48.
测试指标 | 仪器或方法 | 测试单位 | 最低检出浓度 |
---|---|---|---|
基本理化指标 pH值、DO、EC、Eh、T | 双通道多参数水质分析仪 (HQ40D,HACH, 美国) | 现场 测试 | 0.01、0.01 mg/L、1 μS/cm、 0.1 mV、0.1 ℃ |
NH4-N、Fe2+、 S2-含量 | 便携式分光光度计(HACH2800,美国) | 0.01 mg/L、0.01 mg/L、1 μg/L | |
碱度 | 滴定法 | 0.01 mg/L | |
常规阳离子 | 电感耦合等离子体发射光谱仪 (ICAP 6300,美国) | 中国地质大学(武汉) 地质调查研究院 | 0.000 1 mg/L |
常规阴离子 | 离子色谱仪 (ICS-2100,赛默,美国) | 0.001 mg/L | |
氢氧同位素 (δD和δ18O) | 液态水同位素分析仪 (LGR,IWA-45EP,美国) | 0.01‰ | |
总砷 | 原子荧光光度计(AFS-9700,北京吉天) | 0.01 mg/L |
Table 1 Summary of testing methods, agencies and minimum detection thresholds for various test indicators
测试指标 | 仪器或方法 | 测试单位 | 最低检出浓度 |
---|---|---|---|
基本理化指标 pH值、DO、EC、Eh、T | 双通道多参数水质分析仪 (HQ40D,HACH, 美国) | 现场 测试 | 0.01、0.01 mg/L、1 μS/cm、 0.1 mV、0.1 ℃ |
NH4-N、Fe2+、 S2-含量 | 便携式分光光度计(HACH2800,美国) | 0.01 mg/L、0.01 mg/L、1 μg/L | |
碱度 | 滴定法 | 0.01 mg/L | |
常规阳离子 | 电感耦合等离子体发射光谱仪 (ICAP 6300,美国) | 中国地质大学(武汉) 地质调查研究院 | 0.000 1 mg/L |
常规阴离子 | 离子色谱仪 (ICS-2100,赛默,美国) | 0.001 mg/L | |
氢氧同位素 (δD和δ18O) | 液态水同位素分析仪 (LGR,IWA-45EP,美国) | 0.01‰ | |
总砷 | 原子荧光光度计(AFS-9700,北京吉天) | 0.01 mg/L |
参数 | 单位 | 孔隙潜水 | 中层孔隙承压水 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
极大值 | 极小值 | 均值 | 变异系数 | 极大值 | 极小值 | 均值 | 变异系数 | |||||
pH值 | 7.70 | 6.27 | 6.90 | 0.03 | 7.86 | 6.29 | 6.92 | 0.04 | ||||
Eh | mV | 222.50 | -185.30 | -24.49 | -4.33 | 212.00 | -170.20 | -89.77 | -0.69 | |||
EC | μS/cm | 2 240.00 | 240.00 | 937.47 | 0.38 | 1 432.00 | 212.00 | 743.87 | 0.27 | |||
DO | mg/L | 7.55 | 0.76 | 2.22 | 0.55 | 266.00 | 0.87 | 4.14 | 5.10 | |||
K+ | mg/L | 156.50 | 0.18 | 9.61 | 2.74 | 22.18 | 0.39 | 1.42 | 1.46 | |||
Na+ | mg/L | 102.78 | 3.78 | 25.60 | 0.76 | 145.00 | 7.50 | 22.55 | 0.59 | |||
Mg2+ | mg/L | 80.40 | 7.77 | 36.07 | 0.36 | 68.77 | 13.46 | 31.03 | 0.32 | |||
Ca2+ | mg/L | 283.00 | 35.30 | 139.30 | 0.35 | 230.00 | 45.00 | 110.03 | 0.25 | |||
Cl- | mg/L | 206.00 | 0.40 | 39.20 | 1.20 | 110.53 | 0.00 | 6.67 | 2.43 | |||
| mg/L | 374.21 | 0.00 | 39.63 | 2.01 | 215.84 | 0.00 | 2.44 | 7.30 | |||
| mg/L | 245.57 | 0.00 | 37.94 | 1.49 | 159.42 | 0.00 | 3.90 | 4.82 | |||
TDS | mg/L | 1 405.10 | 157.81 | 598.51 | 0.44 | 1 004.05 | 227.64 | 445.27 | 0.25 |
Table 2 Statistical table for the groundwater chemical characteristics in the study area
参数 | 单位 | 孔隙潜水 | 中层孔隙承压水 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
极大值 | 极小值 | 均值 | 变异系数 | 极大值 | 极小值 | 均值 | 变异系数 | |||||
pH值 | 7.70 | 6.27 | 6.90 | 0.03 | 7.86 | 6.29 | 6.92 | 0.04 | ||||
Eh | mV | 222.50 | -185.30 | -24.49 | -4.33 | 212.00 | -170.20 | -89.77 | -0.69 | |||
EC | μS/cm | 2 240.00 | 240.00 | 937.47 | 0.38 | 1 432.00 | 212.00 | 743.87 | 0.27 | |||
DO | mg/L | 7.55 | 0.76 | 2.22 | 0.55 | 266.00 | 0.87 | 4.14 | 5.10 | |||
K+ | mg/L | 156.50 | 0.18 | 9.61 | 2.74 | 22.18 | 0.39 | 1.42 | 1.46 | |||
Na+ | mg/L | 102.78 | 3.78 | 25.60 | 0.76 | 145.00 | 7.50 | 22.55 | 0.59 | |||
Mg2+ | mg/L | 80.40 | 7.77 | 36.07 | 0.36 | 68.77 | 13.46 | 31.03 | 0.32 | |||
Ca2+ | mg/L | 283.00 | 35.30 | 139.30 | 0.35 | 230.00 | 45.00 | 110.03 | 0.25 | |||
Cl- | mg/L | 206.00 | 0.40 | 39.20 | 1.20 | 110.53 | 0.00 | 6.67 | 2.43 | |||
| mg/L | 374.21 | 0.00 | 39.63 | 2.01 | 215.84 | 0.00 | 2.44 | 7.30 | |||
| mg/L | 245.57 | 0.00 | 37.94 | 1.49 | 159.42 | 0.00 | 3.90 | 4.82 | |||
TDS | mg/L | 1 405.10 | 157.81 | 598.51 | 0.44 | 1 004.05 | 227.64 | 445.27 | 0.25 |
[1] | RAVENSCROFT P, BRAMMER H, RICHARDS K. Arsenic pollution: a global synbook[M]. Hoboken: John Wiley & Sons, 2009. |
[2] | WENDLAND F, BACH M, KUNKEL R. The influence of nitrate reduction strategies on the temporal development of the nitrate pollution of soil and groundwater throughout Germany: a regionally differentiated case study[J]. Nutrient Cycling in Agroecosystems, 1998, 50:169-181. |
[3] |
VAN HALEM D, DE VET W, VERBERK J, et al. Characterization of accumulated precipitates during subsurface iron removal[J]. Applied Geochemistry, 2011, 26(1):116-124.
DOI URL |
[4] |
HINKLE S R, BÖHLKE J K, DUFF J H, et al. Aquifer-scale controls on the distribution of nitrate and ammonium in ground water near La Pine, Oregon, USA[J]. Journal of Hydrology, 2007, 333(2/3/4):486-503.
DOI URL |
[5] | 陈建耀, 王亚, 张洪波, 等. 地下水硝酸盐污染研究综述[J]. 地理科学进展, 2006, 25(1):34-44. |
[6] | 贾永锋, 郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1):51-61. |
[7] | 陈云嫩, 柴立元. 砷在地下水环境中的迁移转化[J]. 有色金属, 2008, 60(1):109-112. |
[8] | 罗艳丽, 李晶, 蒋平安, 等. 新疆高砷地区地下水水化学特征及其成因分析[J]. 干旱区资源与环境, 2017, 31(8):116-121. |
[9] | 袁文真. 傍河开采驱动下河水入渗地下水过程中铁锰生物地球化学过程研究[D]. 长春: 吉林大学, 2017. |
[10] | 孟祥菲. 地下水位波动带铁猛含量变化规律研究: 以沈阳黄家水源地为例[D]. 长春: 吉林大学, 2015. |
[11] | 杨维, 郭毓, 王泳, 等. 氨氮污染地下水的动态实验研究[J]. 沈阳建筑大学学报(自然科学版), 2007, 23(5):826-831. |
[12] | 陈兴平, 邓云华, 张裕曾, 等. 湖北南洪村饮水砷含量及砷中毒调查[J]. 中国地方病防治杂志, 2007, 22(4):281-282. |
[13] | 汪爱华, 赵淑军. 湖北省仙桃市地方性砷中毒病区水砷调查与分析[J]. 中国热带医学, 2007, 7(8):1486-1487. |
[14] | 张晓云. 太原市南郊地下水中铁、锰污染及治理对策[J]. 山西水利科技, 1999(4):93-94. |
[15] | 刘波, 张艳, 高静, 等. 北京市通州区农村地下水氨氮浓度及其影响因素[J]. 环境与健康杂志, 2006, 23(4):328-330. |
[16] | 贾国东, 钟佐燊. 含铁地下水成因、危害及防治[J]. 水文地质工程地质, 2000, 27(1):7-10. |
[17] |
FAROOQ S H, CHANDRASEKHARAM D, BERNER Z, et al. Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta[J]. Water Research, 2010, 44(19):5575-5588.
DOI URL |
[18] | 杨素珍, 郭华明, 唐小惠, 等. 内蒙古河套平原地下水砷异常分布规律研究[J]. 地学前缘, 2008, 15(1):242-249. |
[19] | 寇亚飞, 陈光宇, 王利. 黄淮海平原劣质地下水分布及其成因分析[J]. 人民黄河, 2013, 35(2):39-41, 44. |
[20] | 梁国玲, 孙继朝, 黄冠星, 等. 珠江三角洲地区地下水锰的分布特征及其成因[J]. 中国地质, 2009, 36(4):899-906. |
[21] | 甘义群, 王焰新, 段艳华, 等. 江汉平原高砷地下水监测场砷的动态变化特征分析[J]. 地学前缘, 2014, 21(4):37-49. |
[22] | 邓娅敏, 王焰新, 李慧娟, 等. 江汉平原砷中毒病区地下水砷形态季节性变化特征[J]. 地球科学, 2015, 40(11):1876-1886. |
[23] | 蔡玲, 胡成, 陈植华, 等. 江汉平原东北部地区高铁锰地下水成因与分布规律[J]. 水文地质工程地质, 2019, 46(4):18-25. |
[24] | 童晨, 冯予诚, 尚睿华, 等. 江汉平原地下水中铁的分布特征及其成因研究[J]. 环境科学与技术, 2019, 42(7):197-205. |
[25] | 沈帅, 马腾, 杜尧, 等. 江汉平原东部浅层地下水氮的空间分布特征[J]. 环境科学与技术, 2018, 41(2):47-56. |
[26] | HARVEY J W, DRUMMOND J D, MARTIN R L, et al. Hydrogeomorphology of the hyporheic zone: stream solute and fine particle interactions with a dynamic streambed[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G4): G00N11. |
[27] |
RAY C, GRISCHEK T, SCHUBERT J, et al. A perspective of riverbank filtration[J]. Journal American Water Works Association, 2002, 94(4):149-160.
DOI URL |
[28] | 吴耀国, 王超, 王惠民, 等. 河流-地下水渗流系统对城市污水的净化作用及机理[J]. 环境科学学报, 2002, 22(1):60-64. |
[29] | 曹永生. 潜流带地表水-地下水相互作用下砷的循环特征: 以河套平原杭锦后旗为例[D]. 北京: 中国地质大学(北京), 2016. |
[30] | 赵琪. 长江下游沿海平原地下水补径排条件与水化学形成机理研究[D]. 长春: 吉林大学, 2016. |
[31] | ZHANG L, CHEN Z, NIE Z, et al. Correlation between δ18O in precipitation and surface air temperature on different time-scale in China[J]. Nuclear Techniques, 2008, 31(9):715-720. |
[32] | ZHENG S H, HOU F G, NI B L. The studies of hydrogen and oxygen stable isotopes in atmospheric precipitation in China[J]. Chinese Science Bulletin, 1983, 28(13):801-806. |
[33] |
TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides: properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1):287-328.
DOI URL |
[34] |
CORSTJENS P L, DE VRIND J P, WESTBROEK P , et al. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein[J]. Applied and Environmental Microbiology, 1992, 58(2):450-454.
DOI URL |
[35] |
GUO H M, LI Y, ZHAO K, et al. Removal of arsenite from water by synthetic siderite: behaviors and mechanisms[J]. Journal of Hazardous Materials, 2011, 186(2/3):1847-1854.
DOI URL |
[36] | 李子君. 人类活动影响下的银川平原潜水水化学形成机制及水质分析[D]. 长春: 吉林大学, 2018. |
[37] | 马燕. 河流渗滤系统中BTEX污染去除机理研究[D]. 北京: 中国地质大学(北京), 2011. |
[38] | 李冰. 抽水驱动下湖水-地下水氮磷运移机理及影响因素研究 : 以龙湖水源地为例[D]. 成都: 成都理工大学, 2018. |
[39] | PANDEY A, SUTER H, HE J Z, et al. Nitrogen addition decreases dissimilatory nitrate reduction to ammonium in rice paddies[J]. Applied and Environmental Microbiology, 2018, 84(17):e00870-e00887. |
[40] | 张迪. 原位高砷地下水环境下铁氧化物矿物吸附态砷的释放特征及机理[D]. 北京: 中国地质大学(北京), 2018. |
[41] | 师亚坤. 松原市卡拉店傍河水源地地下水氨氮的迁移转化规律与预测研究[D]. 长春: 吉林大学, 2019. |
[1] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[2] | ZENG Cheng, HE Chun, XIAO Shizhen, LIU Zaihua, CHEN Wangguang, HE Jianghu. Carbon flux in a typical dolomite-dominated drainage basin in humid subtropical climate [J]. Earth Science Frontiers, 2022, 29(3): 179-188. |
[3] | LIU Yong, ZHANG Qi, QIAN Jiazhong, WU Dun, ZHANG Wenyong. Simulation of bimolecular reactive solute transport in porous media via image analysis [J]. Earth Science Frontiers, 2022, 29(3): 248-255. |
[4] | ZHU Liang, LIU Jingtao, ZHANG Yuxi, LIU Dandan, JIAO Shizhe. Evaluation of water resource multiple effect based on the analysis of water circulation: An example of the Beichuan River Basin upstream of the Yellow River [J]. Earth Science Frontiers, 2022, 29(3): 263-270. |
[5] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[6] | HUI Shujun, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Factors affecting uranium adsorption on aquifer sandstone [J]. Earth Science Frontiers, 2021, 28(5): 68-78. |
[7] | SUN Zhanxue, MA Wenjie, LIU Yajie, LIU Jinhui, ZHOU Yipeng. Research progress on groundwater contamination and remediation in in situ leaching uranium mines [J]. Earth Science Frontiers, 2021, 28(5): 215-225. |
[8] | LÜ Xiaoli, LIU Jingtao, ZHOU Bing, ZHU Liang, ZHANG Yuxi. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin [J]. Earth Science Frontiers, 2021, 28(2): 426-436. |
[9] | LI Fuxing, CHEN Fulong, CAI Wenjing, HE Chaofei, LONG Aihua. Multiscale runoff prediction based on the EMD combined model [J]. Earth Science Frontiers, 2021, 28(1): 428-437. |
[10] | LI Mengmeng, GUO Qizhong, LIAN Jijian, CHEN Liang. A calculation method for assessing the social benefits of a sponge city: a case study for the Peiyang Park Campus, Tianjin University [J]. Earth Science Frontiers, 2020, 27(3): 281-289. |
[11] | WU Chu,WU Xiong,ZHANG Yanshuai,DONG Yanyan,ZHU Pengcheng. Distribution characteristics and genesis of highfluoride groundwater in the Niuxin Mountain, Qinhuangdao. [J]. Earth Science Frontiers, 2018, 25(4): 307-315. |
[12] | GAO Zhipeng,GUO Huaming,QU Jihong. Numerical simulation of nitrogen transport in river-groundwater system in the Weihe River Basin. [J]. Earth Science Frontiers, 2018, 25(3): 273-284. |
[13] | LIAO Lei,HE Jiangtao,PENG Cong,ZHANG Zhenguo,WANG Lei. Methodologies in calculating apparent background values of minor components in groundwater: a case study of the Liujiang Basin [J]. Earth Science Frontiers, 2018, 25(1): 267-275. |
[14] | . [J]. Earth Science Frontiers, 2017, 24(5): 172-181. |
[15] | LI Yi, LI Xu-Feng, CHEN Zhao-Li, XU Jing-Chun. [J]. Earth Science Frontiers, 2015, 22(4): 312-319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||