Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 215-225.DOI: 10.13745/j.esf.sf.2021.2.11
Previous Articles Next Articles
SUN Zhanxue(), MA Wenjie, LIU Yajie, LIU Jinhui, ZHOU Yipeng
Received:
2020-04-10
Revised:
2020-10-09
Online:
2021-09-25
Published:
2021-10-29
CLC Number:
SUN Zhanxue, MA Wenjie, LIU Yajie, LIU Jinhui, ZHOU Yipeng. Research progress on groundwater contamination and remediation in in situ leaching uranium mines[J]. Earth Science Frontiers, 2021, 28(5): 215-225.
工艺方法 | 适用条件 | 常用试剂 | 工作原理 |
---|---|---|---|
酸法 | 碳酸盐 含量不应超过2.0% | H2SO4、HCl、HNO3等 | UO3+H2SO4=UO2SO4+H2O U3O8+ UO2SO4+2 |
碱法 | 碳酸盐含量过高(>2.0%) 或矿段埋深较大(> 400 m) | Na2CO3、 NaHCO3等 | UO3+3Na2CO3+H2O=Na4[ U3O8+9Na2CO3+ NaHCO3+NaOH=Na2CO3+H2O |
中性 | 低品位、高碳酸盐、 高矿化度 | O2+CO2 | CO2+H2O=H++HC 2UO2+O2=2UO3 UO3+3 |
Table 1 Regular techniques and principle of in situ leaching of uranium
工艺方法 | 适用条件 | 常用试剂 | 工作原理 |
---|---|---|---|
酸法 | 碳酸盐 含量不应超过2.0% | H2SO4、HCl、HNO3等 | UO3+H2SO4=UO2SO4+H2O U3O8+ UO2SO4+2 |
碱法 | 碳酸盐含量过高(>2.0%) 或矿段埋深较大(> 400 m) | Na2CO3、 NaHCO3等 | UO3+3Na2CO3+H2O=Na4[ U3O8+9Na2CO3+ NaHCO3+NaOH=Na2CO3+H2O |
中性 | 低品位、高碳酸盐、 高矿化度 | O2+CO2 | CO2+H2O=H++HC 2UO2+O2=2UO3 UO3+3 |
[1] | WORLD NUCLEAR ASSOCIATION. World uranium mining production[EB/OL].(2019-10-28) [2020-04-03]. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx. |
[2] | Nuclear Energy Agency/International Atomic Energy Agency. Uranium 2018: resources, production and demand[M]. Paris: OECD Publishing, 2019. |
[3] | WORLD NUCLEAR ASSOCIATION. China’s nuclear fuel cycle[EB/OL].(2019-10-29) [2020-04-03]. https://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-fuel-cycle.aspx. |
[4] |
CUNEY M. Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types[J]. Economic Geology, 2010, 105(3):553-569.
DOI URL |
[5] | CORAL T, DESCOSTES M, DE BOISSEZON H, et al. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages[J]. Science of the Total Environment, 2018, 628/629:26-35. |
[6] | MORRELL J S, JACKSON M J. Uranium processing and properties[M]. New York: Springer New York, 2013. |
[7] |
LAKANIEMI A M, DOUGLAS G B, KAKSONEN A H. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments[J]. Journal of Hazardous Materials, 2019, 371:198-212.
DOI URL |
[8] | WORLD NUCLEAR ASSOCIATION. In situ leach (ISL) mining of uranium[EB/OL]. (2017-10-20) [2020-04-03]. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/in-situ-leach-mining-of-uranium.aspx. |
[9] |
RUIZ O, THOMSON B, CERRATO J M, et al. Groundwater restoration following in situ recovery (ISR) mining of uranium[J]. Applied Geochemistry, 2019, 109:104418.
DOI URL |
[10] | TAN Y, LIAO W, JIANG Y. Technological innovation and development of in-situ leaching uranium in China[C]//TAYLOR A. Proceedings of ALTA2018 Uranium-REE-Lithium Sessions. Melbourne: ALTA Metallurical Services Publications, 2018: 1-9. |
[11] | 杜运斌. 坚持改革创新, 不断推进我国天然铀产业转型升级[M]//张廷克, 李闽榕, 潘启龙. 中国核能发展报告(2019). 北京: 社会科学文献出版社, 2019: 193-204. |
[12] |
BHALARA P D, PUNETHA D, BALASUBRAMANIAN K. A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment[J]. Journal of Environmental Chemical Engineering, 2014, 2(3):1621-1634.
DOI URL |
[13] |
LI J, ZHANG Y. Remediation technology for the uranium contaminated environment: a review[J]. Procedia Environmental Sciences, 2012, 13:1609-1615.
DOI URL |
[14] | 孙占学, 刘媛媛, 马文洁, 等. 铀矿区地下水及其生态安全研究进展[J]. 地学前缘, 2014, 21(4):158-167. |
[15] |
HU K G, WANG Q L, TAO G Q, et al. Experimental study on restoration of polluted groundwater from in situ leaching uranium mining with sulfate reducing bacteria and ZVI-SRB[J]. Procedia Earth and Planetary Science, 2011, 2:150-155.
DOI URL |
[16] | INTERNATIONAL ATOMIC ENERGY AGENCY. Environmental contamination from uranium production facilities and their remediation: proceedings of an international workshop Lisbon[M]. Vienna: International Atomic Energy Agency, 2004. |
[17] | ROMERO-GONZÁLEZ M, NWAOBI B C, HUFTON J M, et al. Ex-situ bioremediation of U(VI) from contaminated mine water using acidithiobacillus ferrooxidans strains[J]. Frontiers in Environmental Science, 2016, 4:39. |
[18] |
WILLIAMS K H, BARGAR J R, LLOYD J R, et al. Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry[J]. Current Opinion in Biotechnology, 2013, 24(3):489-497.
DOI URL |
[19] |
MUDD G M. Critical review of acid in situ leach uranium mining: 2. Soviet Block and Asia[J]. Environmental Geology, 2001, 41(3/4):404-416.
DOI URL |
[20] | TAYLOR G, FARRINGTON V, WOODS P, et al. Review of environmental impacts of the acid in situ leach uranium mining process[R]. Melbourne: CSIRO Land and Water, 2004. |
[21] | 张勇, 黄群英, 周义朋, 等. 高碳酸盐型铀矿床微酸中性地浸采铀试验[J]. 有色金属(冶炼部分), 2016(2):33-37. |
[22] | 赵凯, 黎广荣, 周义朋, 等. 砂岩型铀矿浸出研究进展[J]. 有色金属(冶炼部分), 2019(6):40-48. |
[23] | DAVIS J A, CURTIS G P. Consideration of geochemical issues in groundwater restoration at uranium in-situ leach mining facilities[R]. Washington D C: US Nuclear Regulatory Commission, 2007: 86. |
[24] | 许根福. CO2+O2地浸采铀主要工艺参数及化学沉淀堵塞问题分析[J]. 铀矿冶, 2014, 33(4):197-202, 222. |
[25] | 阳晓宇, 陈国贞, 易志刚, 等. 砂岩型铀矿CO2+O2地浸过程中浸出铀浓度与HCO3浓度关系分析[J]. 铀矿冶, 2020, 39(1):11-16. |
[26] | ISHIMORI Y, LANGE K, MARTIN P, et al. Measurement and calculation of radon releases from NORM residues[M]. Vienna: IAEA, 2013: 50-54. |
[27] | CAMPBELL M D, WISE H M, RACKELY R I. Uranium in situ leach (recovery) development and associated environmental issues[J]. Gulf Coast Association of Geological Societies Transactions, 2007, 57:99-114. |
[28] | 徐玲玲, 杨洪英, 周义朋, 等. 浸铀微生物及其应用[J]. 有色金属(冶炼部分), 2020(4):93-101. |
[29] | 刘乃忠, 苏学斌, 杜志明, 等. 中美CO2+O2地浸采铀水冶工艺的对比分析与优化选择[C]//全国铀矿大基地建设海口学术研讨会论文集. 北京: 中国核学会, 2012: 531-537. |
[30] | 苏学斌, 杜志明. 我国地浸采铀工艺技术发展现状与展望[J]. 中国矿业, 2012, 21(9):79-83. |
[31] | EDWARDS C R, OLIVER A J. Uranium processing: a review of current methods and technology[J]. Journal of the Minerals Metals and Materials Society, 2000, 52(9):12-20. |
[32] |
FERNANDES H M, FRANKLIN M R, VEIGA L H. Acid rock drainage and radiological environmental impacts: a study case of the Uranium mining and milling facilities at Pocos de Caldas[J]. Waste Management, 1998, 18(3):169-181.
DOI URL |
[33] | 易正戟. 硫酸盐还原菌和零价铁协同治理地浸采铀矿山废水的机理研究[D]. 广州: 中国科学院广州地球化学研究所, 2007. |
[34] |
BLAKE J M, AVASARALA S, ARTYUSHKOVA K, et al. Elevated concentrations of U and co-occurring metals in abandoned mine wastes in a northeastern Arizona native American community[J]. Environmental Science & Technology, 2015, 49(14):8506-8514.
DOI URL |
[35] |
SAUNDERS J A, PIVETZ B E, VOORHIES N, et al. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites[J]. Journal of Environmental Management, 2016, 183:67-83.
DOI URL |
[36] | 黄国夫. 酸法地浸采铀的地下水生态环境问题[J]. 华东地质学院学报, 1998, 21(1):7-13. |
[37] |
BORCH T, ROCHE N, JOHNSON T E. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine[J]. Journal of Environmental Monitoring, 2012, 14(7):1814-1823.
DOI URL |
[38] |
ZACHARA J M, LONG P E, BARGAR J, et al. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone[J]. Journal of Contaminant Hydrology, 2013, 147:45-72.
DOI URL |
[39] | CATCHPOLE G, KUCHELKA R. Groundwater restoration of uranium ISL mines in the United States[C]//US Department of Energy. Proceedings of workshop on uranium production environmental restoration: an exchange between the United States and Germany. Pasadena: Jacobs Engineering Group, 1993. |
[40] |
WILLIAMS K H, LONG P E, DAVIS J A, et al. Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater[J]. Geomicrobiology Journal, 2011, 28(5/6):519-539.
DOI URL |
[41] |
LOVLEY D R, PHILLIPS E J P, GORBY Y A, et al. Microbial reduction of uranium[J]. Nature, 1991, 350(6317):413-416.
DOI URL |
[42] |
BERNIER-LATMANI R, VEERAMANI H, VECCHIA E D, et al. Non-uraninite products of microbial U(VI) reduction[J]. Environmental Science & Technology, 2010, 44(24):9456-9462.
DOI URL |
[43] |
BRUTINEL E D, GRALNICK J A. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella[J]. Applied Microbiology and Biotechnology, 2012, 93(1):41-48.
DOI URL |
[44] |
CHOUDHARY S, SAR P. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste[J]. Journal of Hazardous Materials, 2011, 186(1):336-343.
DOI URL |
[45] |
HYUN S P, DAVIS J A, SUN K, et al. Uranium(VI) reduction by iron(II) monosulfide mackinawite[J]. Environmental Science & Technology, 2012, 46(6):3369-3376.
DOI URL |
[46] |
CHANG Y J, LONG P E, GEYER R, et al. Microbial incorporation of 13C-labeled acetate at the field scale: detection of microbes responsible for reduction of U(VI)[J]. Environmental Science & Technology, 2005, 39(23):9039-9048.
DOI URL |
[47] |
CHANDLER D P, KUKHTIN A, MOKHIBER R, et al. Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system[J]. Environmental Science & Technology, 2010, 44(14):5516-5522.
DOI URL |
[48] |
SNOEYENBOS-WEST O L, NEVIN K P, ANDERSON R T, et al. Enrichment of geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments[J]. Microbial Ecology, 2000, 39(2):153-167.
DOI URL |
[49] |
COLOGGI D L, LAMPA-PASTIRK S, SPEERS A M, et al. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism[J]. Proceedings of the National Academy of Sciences, 2011, 108(37):15248-15252.
DOI URL |
[50] |
REGENSPURG S, MARGOT-ROQUIER C, HARFOUCHE M, et al. Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland)[J]. Geochimica et Cosmochimica Acta, 2010, 74(7):2082-2098.
DOI URL |
[51] | LOVLEY D R, HOLMES D E, NEVIN K P . Dissimilatory Fe(III) and Mn(IV) reduction[J]. Advances in Microbial Physiology, 2004, 49:219-286. |
[52] | AKOB D M, LEE S H, SHETH M, et al. Gene expression correlates with process rates quantified for sulfate and Fe(III)-reducing bacteria in U(VI)-contaminated sediments[J]. Frontiers in Microbiology, 2012, 3:280. |
[53] |
GORBY Y A, LOVLEY D R. Enzymic uranium precipitation[J]. Environmental Science & Technology, 1992, 26(1):205-207.
DOI URL |
[54] |
BARLETT M, ZHUANG K, MAHADEVAN R, et al. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation[J]. Biogeosciences, 2012, 9(3):1033-1040.
DOI URL |
[55] |
MADDEN A S, SMITH A C, BALKWILL D L, et al. Microbial uranium immobilization independent of nitrate reduction[J]. Environmental Microbiology, 2007, 9(9):2321-2330.
DOI URL |
[56] |
YAN S, BOYANOV M I, MISHRA B, et al. U(VI) reduction by biogenic and abiotic hydroxycarbonate green rusts: impacts on U(IV) speciation and stability over time[J]. Environmental Science & Technology, 2018, 52(8):4601-4609.
DOI URL |
[57] |
SHARP J O, LEZAMA-PACHECO J S, SCHOFIELD E J, et al. Uranium speciation and stability after reductive immobilization in aquifer sediments[J]. Geochimica et Cosmochimica Acta, 2011, 75(21):6497-6510.
DOI URL |
[58] |
ALESSI D S, LEZAMA-PACHECO J S, STUBBS J E , et al. The product of microbial uranium reduction includes multiple species with U(IV)-phosphate coordination[J]. Geochimica et Cosmochimica Acta, 2014, 131:115-127.
DOI URL |
[59] |
WATSON D B, WU W M, MEHLHORN T, et al. In situ bioremediation of uranium with emulsified vegetable oil as the electron donor[J]. Environmental Science & Technology, 2013, 47(12):6440-6448.
DOI URL |
[60] |
PATTANAPIPITPAISAL P, MABBETT A N, FINLAY J A, et al. Reduction of Cr(VI) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to Cr-stress[J]. Environmental Technology, 2002, 23(7):731-745.
DOI URL |
[61] |
MACASKIE L E, EMPSON R M, CHEETHAM A K, et al. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4[J]. Science, 1992, 257(5071):782-784.
DOI URL |
[62] |
THOMAS R A P, MACASKIE L E. Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution[J]. Environmental Science & Technology, 1996, 30(7):2371-2375.
DOI URL |
[63] |
LOVLEY D R, PHILLIPS E J P . Bioremediation of uranium contamination with enzymatic uranium reduction[J]. Environmental Science & Technology, 1992, 26(11):2228-2234.
DOI URL |
[64] |
ANDERSON R T, VRIONIS H A, ORTIZ-BEMAD I, et al. Stimulating the in situ activity of geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Applied and Environmental Microbiology, 2003, 69(10):5884-5891.
DOI URL |
[65] |
GIHRING T M, ZHANG G X, BRANDT C C, et al. A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer[J]. Applied and Environmental Microbiology, 2011, 77(17):5955-5965.
DOI URL |
[66] |
ROESLER A J, GAMMONS C H, DRUSCHEL G K, et al. Geochemistry of flooded underground mine workings influenced by bacterial sulfate reduction[J]. Aquatic Geochemistry, 2007, 13(3):211-235.
DOI URL |
[67] |
BEEDER J, NILSEN R K, ROSNES J T, et al. Archaeoglobus fulgidus isolated from hot north sea oil field waters[J]. Applied and Environmental Microbiology, 1994, 60(4):1227-1231.
DOI URL |
[68] |
DHILLON A, TESKE A, DILLON J, et al. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin[J]. Applied and Environmental Microbiology, 2003, 69(5):2765-2772.
DOI URL |
[69] |
KIEU H T Q, MÜLLER E, HORN H. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria[J]. Water Research, 2011, 45(13):3863-3870.
DOI URL |
[70] | 狄军贞, 安文博, 戴男男, 等. 玉米芯为碳源铁屑协同生物麦饭石活化颗粒的硫酸盐还原动力学及其锰离子响应实验[J]. 环境工程学报, 2016, 10(3):1103-1108. |
[71] |
HUSSAIN A, QAZI J I. Application of sugarcane bagasse for passive anaerobic biotreatment of sulphate rich wastewaters[J]. Applied Water Science, 2016, 6(2):205-211.
DOI URL |
[72] |
SINGH R, KUMAR A, KIRROLIA A, et al. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study[J]. Bioresource Technology, 2011, 102(2):677-682.
DOI URL |
[73] | 江峰, 孙容容, 梁振声, 等. 硫酸盐还原菌处理酸性矿山废水的研究进展[J]. 华南师范大学学报(自然科学版), 2018, 50(2):1-10. |
[74] | CASTRO H F, WILLIAMS N H, OGRAM A. Phylogeny of sulfate-reducing bacteria[J]. FEMS Microbiology Ecology, 2000, 31(1):1-9. |
[75] |
DE MATOS L P, COSTA P F, MOREIRA M, et al. Simultaneous removal of sulfate and arsenic using immobilized non-traditional SRB mixed culture and alternative low-cost carbon sources[J]. Chemical Engineering Journal, 2018, 334:1630-1641.
DOI URL |
[76] | 刘晓烨. SRB菌种培养及新型生物反应器处理酸性矿山废水的研究[D]. 武汉: 武汉理工大学, 2014. |
[77] | 安文博, 王来贵, 狄军贞. 生铁屑固定硫酸盐还原菌颗粒特性实验分析[J]. 非金属矿, 2017, 40(2):12-16. |
[78] | 狄军贞, 江富, 戴男男, 等. 硫酸盐还原菌污泥固定化特性[J]. 环境工程学报, 2015, 9(5):2227-2231. |
[79] | 田玉斌, 谭科艳, 石欢, 等. 新型硫酸盐还原菌包埋填料对于Cd2+和Pb2+的去除效果[J]. 工业水处理, 2017, 37(9):83-86, 108. |
[80] | 孔琦. 上流式生物膜反应器处理含重金属酸性废水的研究[D]. 天津: 天津大学, 2006. |
[81] | YANG D Y, ZHANG Y, SHI R J, et al. Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate[J]. Environmental Science, 2014, 35(1):319-326. |
[82] |
LUPTÁKOVÁ A, MA-INGOVÁ E, KOTULI-OVÁ I, et al. Sulphates removal from acid mine drainage[J]. IOP Conference Series: Earth and Environmental Science, 2016, 44:052040.
DOI URL |
[83] |
GROUDEV S, GEORGIEV P, SPASOVA I, et al. Bioremediation of acid mine drainage in a uranium deposit[J]. Hydrometallurgy, 2008, 94(1/2/3/4):93-99.
DOI URL |
[84] | 毕晶晶, 彭昌盛, 胥慧真. 地下水硝酸盐污染与治理研究进展综述[J]. 地下水, 2010, 32(1):97-102. |
[85] | 孔繁鑫, 陈洪斌. 原位生物修复脱氮墙去除地下水硝酸盐的进展[J]. 安徽农业科学, 2008, 36(29):12879-12881. |
[86] | 易正戟, 谭凯旋, 澹爱丽, 等. 硫酸盐还原菌及其在工业和矿山废水治理中的应用[J]. 云南师范大学学报(自然科学版), 2006, 26(3):39-45. |
[87] | 陈炳辉, 韦慧晓, 周永章. 粤北大宝山多金属矿山的生态环境污染原因及治理途径[J]. 中国矿业, 2006, 15(6):40-42. |
[88] | 张云, 张胜, 杨振京, 等. 不同碳源强化地下水中生物脱氮模拟试验研究[J]. 地理与地理信息科学, 2003, 19(1):66-69. |
[89] | 庄文, 段继周, 邵宏波, 等. 油田采出液中硝酸盐还原菌的分离培养及对硫酸盐还原菌的抑制研究[J]. 科学技术与工程, 2010, 10(17):4125-4130. |
[90] |
YU L, LIU Y J, WANG G J. Identification of novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 and application for removal of nitrate from industrial wastewater[J]. Biodegradation, 2009, 20(3):391-400.
DOI URL |
[91] | 周泉宇, 谭凯旋, 刘岩. 硫酸盐还原菌治理地浸采铀地下水的柱实验研究[J]. 矿业工程研究, 2009, 24(2):75-78. |
[92] | 王清良, 丁德馨, 张国奇, 等. SRB治理地浸采铀矿山污染地下水条件试验研究[J]. 现代矿业, 2010, 26(4):71-73. |
[93] | 王清良, 张国奇, 胡鄂明, 等. DNB去除地浸铀矿山污染地下水中N O 3 -的研究[J]. 铀矿冶, 2010, 29(2):82-86. |
[94] | 胡凯光, 汪爱河, 陶干强, 等. 硫酸根和硝酸根对ZVI-SRB处理铀废水的影响研究[J]. 矿业工程研究, 2010, 25(3):76-78. |
[95] |
WALL J D, KRUMHOLZ L R. Uranium reduction[J]. Annual Review of Microbiology, 2006, 60(1):149-166.
DOI URL |
[96] | KIMURA S, HALLBERG K B, JOHNSON D B. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria[J]. Biodegradation, 2006, 17(2):57-65. |
[1] | ZHANG Yuye, HE Jiangtao, DENG Lu, ZOU Hua, ZHANG Jingang, YANG Meiping. Effects of lomefloxacin and norfloxacin on the biological water denitrification process—an experimental study [J]. Earth Science Frontiers, 2022, 29(5): 497-507. |
[2] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[3] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[4] | XIONG Guiyao, WU Jichun, YANG Yun, ZHU Xiaobin, LIU Mengwen, SONG Yalin. Microbial fields and multi-field coupling in organic contaminated soil-groundwater systems [J]. Earth Science Frontiers, 2022, 29(3): 189-199. |
[5] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[6] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
[7] | HE Baonan, HE Jiangtao, SUN Jichao, WANG Junjie, WEN Dongguang, JIN Jihong, PENG Cong, ZHANG Changyan. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions [J]. Earth Science Frontiers, 2022, 29(3): 51-63. |
[8] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[9] | LÜ Xiaoli, ZHENG Yuejun, HAN Zhantao, LI Haijun, YANG Mingnan, ZHANG Ruolin, LIU Dandan. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98. |
[10] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[11] | ZHAO Weidong, ZHAO Lu, GONG Jianshi, ZHOU Wenyi, QIAN Jiazhong. Pollution assessment and source apportionment of shallow groundwater in Suzhou mining area, China [J]. Earth Science Frontiers, 2021, 28(5): 1-14. |
[12] | XIE Fei, ZHANG Yuxi, LIU Jingtao, ZHOU Bing, XIANG Xiaoping. Groundwater quality and pollution assessment based on ‘hierarchical ladder evaluation method’: A case study of Tongchuan Cit [J]. Earth Science Frontiers, 2021, 28(5): 15-25. |
[13] | ZHU Hui, YE Shujun, WU Jichun, XU Haizhen. Characteristics of soil lithology and pollutants in typical contamination sites in China [J]. Earth Science Frontiers, 2021, 28(5): 26-34. |
[14] | PENG Ziqi, MA Teng, LIU Yanjun, CHEN Juan, QIU Wenkai, LIU Rui. Effect of pressure on C-N-S-Fe-H2O system in sil [J]. Earth Science Frontiers, 2021, 28(5): 79-89. |
[15] | SHEN Xiaofang, WAN Yuyu, WANG Ligang, SU Xiaosi, DONG Weihong. Multiphase flow modeling of natural attenuation of volatile organic compounds (VOCs) in a petroleum contaminated sit [J]. Earth Science Frontiers, 2021, 28(5): 90-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||