Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 448-454.DOI: 10.13745/j.esf.sf.2021.11.29
Previous Articles Next Articles
CHI Minghui1,2(), QIN Yanwen1,2, YANG Chenchen1,2, WEN Quan1,2, SUN Ning1,2, ZHU Huailin1,2, ZHANG Lei1,2,*(
)
Received:
2021-05-06
Revised:
2021-11-08
Online:
2022-07-25
Published:
2022-07-28
Contact:
ZHANG Lei
CLC Number:
CHI Minghui, QIN Yanwen, YANG Chenchen, WEN Quan, SUN Ning, ZHU Huailin, ZHANG Lei. Distribution and evaluation of nitrogen, phosphorus and organic matter in sediments of the middle reaches of the Chaobai River[J]. Earth Science Frontiers, 2022, 29(4): 448-454.
河流名称 | OM | TN | TP | 数据来源 | |||
---|---|---|---|---|---|---|---|
平均值/% | 范围/(g·kg-1) | 平均值/(g·kg-1) | 范围/(g·kg-1) | 平均值/(g·kg-1) | 范围/(g·kg-1) | ||
潮白河中游 | 5.32 | 0.17~13.15 | 0.192 | 0.005~1.028 | 1.662 | 0.367~4.825 | 本研究 |
海河 | 1.012 | 0.131~4.938 | 0.874 | 0.01~11.42 | 文献[26] | ||
沙溪河 | 1.333 | 0.813~2.038 | 0.54 | 0.25~0.723 | 文献[27] | ||
沂沭河 | 0.18 | 0.01~0.74 | 0.067 | 0.003~0.29 | 0.064 | 0.003~0.247 | 文献[28] |
清潩河 | 4.73 | 1.11~15.76 | 5.557 | 2.14~9.47 | 文献[29] | ||
梁滩河 | 1.8 | 1.25~2.68 | 0.22 | 0.12~0.46 | 文献[30] | ||
抚河 | 1.625 | 0.509~2.575 | 1.85 | 1.04~2.74 | 0.84 | 0.11~1.32 | 文献[31] |
Table 1 Comparisons of OM content, TN or TP in surface sediments between different rivers
河流名称 | OM | TN | TP | 数据来源 | |||
---|---|---|---|---|---|---|---|
平均值/% | 范围/(g·kg-1) | 平均值/(g·kg-1) | 范围/(g·kg-1) | 平均值/(g·kg-1) | 范围/(g·kg-1) | ||
潮白河中游 | 5.32 | 0.17~13.15 | 0.192 | 0.005~1.028 | 1.662 | 0.367~4.825 | 本研究 |
海河 | 1.012 | 0.131~4.938 | 0.874 | 0.01~11.42 | 文献[26] | ||
沙溪河 | 1.333 | 0.813~2.038 | 0.54 | 0.25~0.723 | 文献[27] | ||
沂沭河 | 0.18 | 0.01~0.74 | 0.067 | 0.003~0.29 | 0.064 | 0.003~0.247 | 文献[28] |
清潩河 | 4.73 | 1.11~15.76 | 5.557 | 2.14~9.47 | 文献[29] | ||
梁滩河 | 1.8 | 1.25~2.68 | 0.22 | 0.12~0.46 | 文献[30] | ||
抚河 | 1.625 | 0.509~2.575 | 1.85 | 1.04~2.74 | 0.84 | 0.11~1.32 | 文献[31] |
指标 | OM | TN | TP |
---|---|---|---|
OM | 1 | ||
TN | 0.476** | 1 | |
TP | 0.288** | 0.622** | 1 |
Table 2 Pearson correlation coefficients between OM content, TN and TP in surface sediments of the study area
指标 | OM | TN | TP |
---|---|---|---|
OM | 1 | ||
TN | 0.476** | 1 | |
TP | 0.288** | 0.622** | 1 |
评价标准 | 有机指数范围 | 有机氮范围 | ||||||
---|---|---|---|---|---|---|---|---|
<0.05 | 0.05~<0.20 | 0.20~<0.50 | ≥0.50 | <0.033 | 0.033~<0.066 | 0.066~<0.133 | ≥0.133 | |
类型 | 清洁 | 较清洁 | 尚清洁 | 有机污染 | 清洁 | 较清洁 | 尚清洁 | 有机氮污染 |
等级 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ |
Table 3 Assessment standards for sediment organic pollution index evaluation
评价标准 | 有机指数范围 | 有机氮范围 | ||||||
---|---|---|---|---|---|---|---|---|
<0.05 | 0.05~<0.20 | 0.20~<0.50 | ≥0.50 | <0.033 | 0.033~<0.066 | 0.066~<0.133 | ≥0.133 | |
类型 | 清洁 | 较清洁 | 尚清洁 | 有机污染 | 清洁 | 较清洁 | 尚清洁 | 有机氮污染 |
等级 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ |
分区 | 有机指数 | 有机氮 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 类型 | 等级 | 最大值/% | 最小值/% | 平均值/% | 类型 | 等级 | |
A区 | 0.512 | 0.000 41 | 0.068 | 较清洁 | Ⅱ | 0.087 | 0.000 64 | 0.018 | 清洁 | Ⅰ |
B区 | 0.745 | 0.000 97 | 0.081 | 较清洁 | Ⅱ | 0.098 | 0.000 92 | 0.021 | 清洁 | Ⅰ |
C区 | 0.216 | 0.000 13 | 0.069 | 较清洁 | Ⅱ | 0.048 | 0.001 4 | 0.018 | 清洁 | Ⅰ |
D区 | 0.285 | 0.000 50 | 0.063 | 较清洁 | Ⅱ | 0.050 | 0.000 48 | 0.016 | 清洁 | Ⅰ |
研究区 | 0.745 | 0.000 13 | 0.071 | 较清洁 | Ⅱ | 0.098 | 0.000 48 | 0.018 | 清洁 | Ⅰ |
Table 4 Statistical table for organic pollution indexes and organic nitrogen contents in surface sediments of different sections of the study area
分区 | 有机指数 | 有机氮 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 类型 | 等级 | 最大值/% | 最小值/% | 平均值/% | 类型 | 等级 | |
A区 | 0.512 | 0.000 41 | 0.068 | 较清洁 | Ⅱ | 0.087 | 0.000 64 | 0.018 | 清洁 | Ⅰ |
B区 | 0.745 | 0.000 97 | 0.081 | 较清洁 | Ⅱ | 0.098 | 0.000 92 | 0.021 | 清洁 | Ⅰ |
C区 | 0.216 | 0.000 13 | 0.069 | 较清洁 | Ⅱ | 0.048 | 0.001 4 | 0.018 | 清洁 | Ⅰ |
D区 | 0.285 | 0.000 50 | 0.063 | 较清洁 | Ⅱ | 0.050 | 0.000 48 | 0.016 | 清洁 | Ⅰ |
研究区 | 0.745 | 0.000 13 | 0.071 | 较清洁 | Ⅱ | 0.098 | 0.000 48 | 0.018 | 清洁 | Ⅰ |
[1] | 余辉, 张文斌, 卢少勇, 等. 洪泽湖表层底质营养盐的形态分布特征与评价[J]. 环境科学, 2010, 31(4): 961-968. |
[2] | 王晓锋, 袁兴中, 刘红, 等. 三峡库区梁滩河水体营养盐时空分布及输出风险[J]. 三峡生态环境监测, 2017, 2(1): 21-27. |
[3] | 卢少勇, 许梦爽, 金相灿, 等. 长寿湖表层沉积物氮磷和有机质污染特征及评价[J]. 环境科学, 2012, 33(2): 393-398. |
[4] | ZHOU Q X, GIBSON C E, ZHU Y M. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK[J]. Chemosphere, 2001, 42(2): 221-225. |
[5] | TING D S, APPAN A. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs[J]. Water Science and Technology, 1996, 34(7/8): 53-59. |
[6] | BAI J, CUI B, CHEN B, et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China[J]. Ecological Modelling, 2011, 222: 301-306 |
[7] | 卢少勇, 远野, 金相灿, 等. 7条环太湖河流沉积物氮含量沿程分布规律[J]. 环境科学, 2012, 33(5): 1497-1502. |
[8] | 王志齐, 李宝, 胡向辉, 等. 南四湖沉积物氮磷和有机质分布特征及其相关性分析[J]. 土壤通报, 2013, 44(4): 867-873. |
[9] | 冯爱萍, 吴传庆, 王雪蕾, 等. 海河流域氮磷面源污染空间特征遥感解析[J]. 中国环境科学, 2019, 39(7): 2999-3008. |
[10] | 王新娟, 李鹏, 刘久荣, 等. 超采对北京市潮白河冲洪积扇中上部地区地下水质的影响[J]. 现代地质, 2016, 30(2): 470-477. |
[11] |
胡镜荣, 石凤英. 华北平原古河道发育的环境条件及其沉积特征[J]. 地理研究, 1983(4): 48-59.
DOI |
[12] | 张竞, 纪冬丽, 白耀楠, 等. 基于遥感的潮白河中游冲积平原宏观沉积特征[J]. 国土资源遥感, 2019, 31(1): 156-163. |
[13] | 姚治君, 管彦平, 高迎春. 潮白河径流分布规律及人类活动对径流的影响分析[J]. 地理科学进展, 2003(6): 599-606. |
[14] | 乔敏敏, 季宏兵, 朱先芳, 等. 密云水库入库河流沉积物中重金属形态分析及风险评价[J]. 环境科学学报, 2013, 33(12): 3324-3333. |
[15] | 刘文清, 甘柯, 邢宇鑫, 等. 潮白河流域土壤重金属生态风险评价方法研究[J]. 城市地质, 2016, 11(2): 14-19. |
[16] | 朱先芳, 唐磊, 季宏兵, 等. 北京北部水系沉积物中重金属的研究[J]. 环境科学学报, 2010, 30(12): 2553-2562. |
[17] | 温泉, 赵艳民, 曹伟, 等. 潮白河中游沉积物中重金属分布、 来源及生态风险[J]. 环境科学研究, 2020, 33(3): 599-607. |
[18] | 齐维晓, 刘会娟, 韩洪兵, 等. 北三河水系沉积物中金属的污染状况研究[J]. 环境科学学报, 2013, 33(1): 117-124. |
[19] | TENDAUPENYU P, FARAI M, MAGADZA C. Spatial distribution of surface sediment nutrients of a subtropical hypereutrophic lake; lake Chivero, Zimbabwe[J]. Environmental Nanotechnology, Monitoring and Management, 2018, 10: 399-408. |
[20] | RIVERSON J, COATS R, COSTA-CABRAL M, et al. Modeling the transport of nutrients and sediment loads into Lake Tahoe under projected climatic changes[J]. Climatic Change, 2013, 116: 35-50. |
[21] | 王书锦, 刘云根, 张超, 等. 洱海流域入湖河口湿地沉积物氮、 磷、 有机质分布及污染风险评价[J]. 湖泊科学, 2017, 29(1): 69-77. |
[22] | 施沁璇, 盛鹏程, 房伟平, 等. 钱塘江杭州段表层沉积物中重金属的生态风险及其生物累积[J]. 上海海洋大学学报, 2018, 27(5): 710-717. |
[23] | 杨洋, 刘其根, 胡忠军, 等. 太湖流域沉积物碳氮磷分布与污染评价[J]. 环境科学学报, 2014, 34(12): 3057-3064. |
[24] | 邱祖凯, 胡小贞, 姚程, 等. 山美水库沉积物氮磷和有机质污染特征及评价[J]. 环境科学学报, 2016, 37(4): 1389-1396. |
[25] | 王岩, 姜霞, 李永峰, 等. 洞庭湖氮磷时空分布与水体营养状态特征[J]. 环境科学研究, 2014, 27(5): 484-491. |
[26] | 程先, 孙然好, 孔佩儒, 等. 海河流域水体沉积物碳、 氮、 磷分布与污染评价[J]. 应用生态学报, 2016, 27(8): 2679-2686. |
[27] | 叶宏萌, 杨浩, 袁旭音, 等. 基于流域沉积物氮磷形态的生态风险评价: 以沙溪流域为例[J]. 环境化学, 2020, 39(12): 3471-3479. |
[28] | 李艺, 吕铃钥, 徐毅, 等. 沂沭河底泥中污染物空间分布特征及评价[J]. 净水技术, 2021, 40(1): 101-106, 128. |
[29] | 王梅, 刘琰, 郑丙辉, 等. 城市内河表层沉积物氮形态及影响因素: 以许昌清潩河为例[J]. 中国环境科学, 2014, 34(3): 720-726. |
[30] | 宋厚燃, 马利民, 闵真真. 梁滩河沉积物中氮磷垂直分布研究[J]. 环境污染与防治, 2012, 34(6): 42-45, 50. |
[31] | 向爱农, 苏甜, 刘方平, 等. 抚河故支河道沉积物污染物分布特征及污染评价[J]. 中国农村水利水电, 2020(10): 117-120. |
[32] | 王亚平, 黄廷林, 周子振, 等. 金盆水库表层沉积物中营养盐分布特征与污染评价[J]. 环境化学, 2017, 36(3): 659-665. |
[33] | D’ANGELO E M, REDDY K R. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and water column[J]. Journal of Environmental Quality, 1994, 23(5): 928-936. |
[34] | 贺合亮, 阳小成. 四川省三种主要灌丛植物叶片及土壤碳氮磷化学计量特征[J]. 三峡生态环境监测, 2017, 2(1): 28-34. |
[35] | 袁和忠, 沈吉, 刘恩峰, 等. 太湖水体及表层沉积物磷空间分布特征及差异性分析[J]. 环境科学, 2010, 31(4): 954-960. |
[36] | 卢凤云, 刘竹青, 季宏兵. 潮白河上游有机质的碳、 氮稳定同位素分析及来源探讨[J]. 中国科学: 地球科学, 2012, 42(12): 1912-1922. |
[37] | 隋桂荣. 太湖表层沉积物中 OM、 TN、 TP 的现状与评价[J]. 湖泊科学, 1996, 8(4): 319-324. |
[38] | 迟明慧, 马迎群, 曹伟, 等. 嘉兴北部湖荡沉积物氮磷和重金属分布及评价[J]. 环境科学与技术, 2020, 43(3): 190-197. |
[1] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[2] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[3] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[4] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
[5] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[6] | ZHANG Jiazhi, JIANG Zaixing, XU Jie, WEI Siyuan, SONG Lizhou, LIU Tong, SHEN Zhihan, JIANG Xiaolong, LI Yongfei, ZHANG Xi. Volcanic sedimentation of Cretaceous Jiufotang Formation in the Chaoyang Basin and its impact on organic matter enrichment [J]. Earth Science Frontiers, 2024, 31(3): 284-297. |
[7] | LIU Hai, WEI Wei, SONG Yang, PAN Yang, LI Yingchun. Pollution characteristics, potential ecological risks and sources of heavy metal pollution in lake sediments in Huoqiu County [J]. Earth Science Frontiers, 2024, 31(3): 420-431. |
[8] | HE Hui, MU Wenping, ZHANG Xiao, SONG Yubing, LÜ Yuanyang, WU Xiong, YE Baoying, BAI Zhongke. Spatio-temporal evolution evaluation of geological environment of large open-pit coal mine areas in Xilin Gol league [J]. Earth Science Frontiers, 2024, 31(3): 443-457. |
[9] | LIU Qixin, GU Xingfa, WANG Chunmei, YANG Jian, ZHAN Yulin. Soil moisture retrieval on both active and passive microwave data scales [J]. Earth Science Frontiers, 2024, 31(2): 42-53. |
[10] | GUO Xuehui, HUANG Renliang, WAN Jianhua. Heavy metal pollution in agricultural land around a tailings pond, northern Hubei and ecological and human health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 77-92. |
[11] | WU Yiping, WANG Qing, TAO Shizhen, WANG Jianjun, LI Qian, ZHANG Ningning, WU Xiaozhi, LI Haowu, WANG Xiaobo. Crustal helium: Accumulation controlling factors and resource evaluation methods [J]. Earth Science Frontiers, 2024, 31(1): 340-350. |
[12] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[13] | ZHANG Liyu, CHEN Qianglu, LI Maowen, YUAN Kun, MA Xiaoxiao, XI Binbin, YUE Yong, HUANG Taiyu. Comparative study on the organic enrichment mechanisms between western Hubei and northeastern Guizhou during the Early Cambrian [J]. Earth Science Frontiers, 2023, 30(6): 181-198. |
[14] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[15] | SU Dong, HUANG Maolong, HAN Wenlong, LI Aiguo, WANG Enzhi, CHEN Xiangsheng. Suitability evaluation of underground space development in Shenzhen: Urban geoenvironmental considerations [J]. Earth Science Frontiers, 2023, 30(4): 514-524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||