

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 107-120.DOI: 10.13745/j.esf.sf.2025.10.23
郭记菊1,2(
), 曹文庚1,2,*(
), 鲁重生1,2, 王哲3, 朱静思4,*(
), 王妍妍1,2, 李祥志1,2, 马翠艳1,2
收稿日期:2025-07-05
修回日期:2025-10-26
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*曹文庚(1985—),男,研究员,主要从事水文地质和水文地球化学方面的研究工作。 E-mail: 281084632@qq.com; 朱静思(1988—),女,高级工程师,主要从事水文水资源方面的工作。 E-mail: 735077092@qq.com
作者简介:郭记菊(2002—),女,博士研究生,主要研究方向为水文地球化学。E-mail: g_jmiao@163.com
基金资助:
GUO Jiju1,2(
), CAO Wengeng1,2,*(
), LU Chongsheng1,2, WANG Zhe3, ZHU Jingsi4,*(
), WANG Yanyan1,2, LI Xiangzhi1,2, MA Cuiyan1,2
Received:2025-07-05
Revised:2025-10-26
Online:2026-01-25
Published:2025-11-10
摘要: 锰(Mn)作为地下水中广泛存在的神经毒性金属元素,其超标(> 0.1 mg·L-1)不仅导致饮用水感官恶化,更可能引发帕金森样神经病变。尽管前期研究揭示了黄河下游冲积平原浅层地下水Mn存在高度空间异质性及大面积异常,但对冲积沉积体系下不同地貌单元Mn富集的水文地球化学机制仍缺乏系统性认知。本研究从区域上尺度上,查明鲁北平原浅层地下水Mn的分布特征和影响因素,同时结合典型水文地质剖面精细刻画,揭示了高Mn地下水的水文地球化学过程及其形成机制。结果表明:区域上地下水中Mn含量从未检出至12.0 mg·L-1,平均值为0.65 mg·L-1,超标率为96.6%;沿典型剖面方向,古河道高地地段地下水Mn的平均质量浓度(0.27 mg·L-1)显著低于泛滥平原段(0.83 mg·L-1),在滨海平原再显著升高(2.53 mg·L-1),水化学类型逐渐由HCO3-Na·Mg和HCO3·Cl-Na·Mg转变为以Cl·HCO3-Na·Mg型为主,最终演变为Cl-Na型水。鲁北平原浅层地下水中Mn最可能的来源是沉积物中的锰氢氧化物和菱锰矿,地下水在漫长的循环过程中,影响该地区地下水Mn含量分布的因素主要有硅酸盐风化、蒸发盐矿物溶解、蒸发浓缩作用、阳离子交替吸附作用、酸碱反应、氧化还原作用等一系列水岩交互作用过程。鲁北平原不同水文地球化学分区的污染源贡献率呈现显著空间分异,与Mn含量的空间演化规律相似。综合研究发现:研究区浅层地下水Mn的空间分异主要受pH驱动的溶解和吸附过程、盐度驱动的离子交替吸附以及原生沉积背景下Mn的释放共同影响。
中图分类号:
郭记菊, 曹文庚, 鲁重生, 王哲, 朱静思, 王妍妍, 李祥志, 马翠艳. 鲁北平原浅层地下水锰空间演化及成因机制[J]. 地学前缘, 2026, 33(1): 107-120.
GUO Jiju, CAO Wengeng, LU Chongsheng, WANG Zhe, ZHU Jingsi, WANG Yanyan, LI Xiangzhi, MA Cuiyan. Spatial evolution and genetic mechanisms of manganese in shallow groundwater of the North Shandong Plain[J]. Earth Science Frontiers, 2026, 33(1): 107-120.
![]() |
表1 鲁北平原浅层地下水采样点主要理化参数的统计特征(n=1 083)
Table 1 Statistical characteristics of the main physicochemical parameters of shallow groundwater sampling points in the typical profile of the study area (n=1 083)
![]() |
| 超过25%毫克当量的离子 | HCO3 | HCO3·SO4 | HCO3·SO4·Cl | HCO3·Cl | SO4 | SO4·Cl | Cl |
|---|---|---|---|---|---|---|---|
| Ca | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ca·Mg | 24 | 8 | 0 | 1 | 0 | 8 | 0 |
| Mg | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
| Na·Ca | 58 | 31 | 9 | 2 | 0 | 9 | 2 |
| Na·Ca·Mg | 118 | 83 | 58 | 0 | 0 | 48 | 2 |
| Na·Mg | 84 | 87 | 120 | 14 | 1 | 79 | 43 |
| Na | 24 | 22 | 24 | 1 | 0 | 19 | 95 |
表2 超过25%毫克当量的离子统计结果
Table 2 Statistical results for ions exceeding 25% of the total milliequivalents
| 超过25%毫克当量的离子 | HCO3 | HCO3·SO4 | HCO3·SO4·Cl | HCO3·Cl | SO4 | SO4·Cl | Cl |
|---|---|---|---|---|---|---|---|
| Ca | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ca·Mg | 24 | 8 | 0 | 1 | 0 | 8 | 0 |
| Mg | 3 | 2 | 0 | 0 | 0 | 0 | 0 |
| Na·Ca | 58 | 31 | 9 | 2 | 0 | 9 | 2 |
| Na·Ca·Mg | 118 | 83 | 58 | 0 | 0 | 48 | 2 |
| Na·Mg | 84 | 87 | 120 | 14 | 1 | 79 | 43 |
| Na | 24 | 22 | 24 | 1 | 0 | 19 | 95 |
图3 Piper三线图显示了鲁北平原典型剖面浅层地下水中的主要阳离子和阴离子浓度(单位为% meq·L-1)
Fig.3 The Piper diagram shows the concentrations of major cations and anions in shallow groundwater of the typical profile in the study area (expressed in units of % meq·L-1)
| 水化学参数 | 相关系数 | 水化学参数 | 相关系数 |
|---|---|---|---|
| pH | -0.304** | 0.139** | |
| Eh | 0.196** | 0.133** | |
| TDS | 0.441** | -0.066* | |
| Ca2+ | 0.542** | Fe3+ | 0.128** |
| Mg2+ | 0.497** | Fe2+ | 0.006 |
| K+ | 0.071* | F- | -0.211** |
| Na+ | 0.322** | 耗氧量 | 0.213** |
| Cl- | 0.494** | 偏硅酸 | -0.338** |
| 0.426** | As | -0.176** | |
| 0.043 |
表3 鲁北平原浅层地下水锰含量与各水化学参数的Spearman相关系数
Table 3 Spearman correlation coefficients between Mn concentration and various hydrochemical parameters in shallow groundwater of the study area
| 水化学参数 | 相关系数 | 水化学参数 | 相关系数 |
|---|---|---|---|
| pH | -0.304** | 0.139** | |
| Eh | 0.196** | 0.133** | |
| TDS | 0.441** | -0.066* | |
| Ca2+ | 0.542** | Fe3+ | 0.128** |
| Mg2+ | 0.497** | Fe2+ | 0.006 |
| K+ | 0.071* | F- | -0.211** |
| Na+ | 0.322** | 耗氧量 | 0.213** |
| Cl- | 0.494** | 偏硅酸 | -0.338** |
| 0.426** | As | -0.176** | |
| 0.043 |
图4 鲁北平原典型剖面浅层地下水中锰含量(a)及相关理化因子((b) Eh、(c) pH、(d)TDS)的剖面变化特征
Fig.4 Variation characteristics of Mn(a) and related physicochemical factors ((b) Eh、(c) pH、(d)TDS) in shallow groundwater along a representative study area profile
图5 鲁北平原典型剖面浅层地下水 (a) Mg2+/Na+以及(b) ${\mathrm{HCO}}_{3}^{-}$/Na+与Ca2+/Na+的归一化摩尔比关系图
Fig.5 Normalized molar ratio relationships of (a) Mg2+/Na+ and (b) ${\mathrm{HCO}}_{3}^{-}$/Na+ with Ca2+/Na+ in shallow groundwater of the typical profile in the study area
图8 鲁北平原典型剖面浅层地下水${{\mathrm{Ca}}^{2+}}^{}$+ ${{\mathrm{Mg}}^{2+}}^{}$- ${\mathrm{HCO}}_{3}^{-}$ -${\mathrm{SO}}_{4}^{2-}$与 ${{\mathrm{Na}}^{+}}^{}$+ ${{\mathrm{K}}^{+}}^{}$-Cl-比值和氯碱指数比
Fig.8 Ratios of major ions in shallow groundwater of the typical profile in the study area: ${{\mathrm{Ca}}^{2+}}^{}$+ Mg2+ -${{\mathrm{HCO}}_{3}^{-}}^{}$-${\mathrm{SO}}_{4}^{2-}$ to ${{\mathrm{Na}}^{+}}^{}$+ ${{\mathrm{K}}^{+}}^{}$-Cl- ratio; Chloro-alkali index
图9 研究区地下水锰的(a)Eh-pH图及(b)Eh-Mn和(c)pH-Mn的统计关系。图例同图5和7。
Fig.9 Relationships related to Mn in the groundwater of the study area: (a) Eh-pH diagram; (b) statistical relationship between Eh and Mn; (c) statistical relationship between pH and Mn
| [1] |
BOUCHARD M F, SAUVÉ S, BARBEAU B, et al. Intellectual impairment in school-age children exposed to manganese from drinking water[J]. Environmental Health Perspectives, 2011, 119(1): 138-143.
DOI PMID |
| [2] |
HUANG B, LI Z, CHEN Z, et al. Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River[J]. Environmental Science and Pollution Research, 2015, 22(24): 19912-19921.
DOI URL |
| [3] | RAHMAN M F, ALI M A, CHOWDHURY A I A, et al. Manganese in groundwater in South Asia needs attention[J]. ACS ES&T Water, 2022, 3(6): 1425-1428. |
| [4] |
CROSSGROVE J, ZHENG W. Manganese toxicity upon overexposure[J]. NMR in Biomedicine, 2004, 17(8): 544-553.
DOI PMID |
| [5] |
REN Y, CAO W, ZHAO L, et al. Environmental factors influencing groundwater quality and health risks in northern Henan Plain, China[J]. Exposure and Health, 2025, 17(2): 507-522.
DOI |
| [6] |
USTAOGLU F, TAS B, TEPE Y, et al. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey[J]. Environmental Science and Pollution Research, 2021, 28(44): 62736-62754.
DOI |
| [7] |
HAGAGE M, HEWAIDY A G A, ABDULAZIZ A M, et al. Nutrient and manganese pollution in groundwater of the northeastern Nile Delta: distribution, sources, and health risks[J]. Applied Water Science, 2025, 15(7): 151.
DOI |
| [8] |
JIANG J, SU C, GENG H, et al. Fe and Mn biogeochemical cycling associated with basin-scale redox dynamics traced by DOM degradation in different alluvial aquifers[J]. Water Research, 2025, 282: 123759.
DOI URL |
| [9] | 蔡玲, 胡成, 陈植华, 等. 江汉平原东北部地区高铁锰地下水成因与分布规律[J]. 水文地质工程地质, 2019, 46(4): 18-25. |
| [10] | 陈吉吉, 陶蕾, 刘保献, 等. 北京市平原区地下水铁锰分布特征及成因分析[J]. 水文地质工程地质, 2024, 51(6): 198-207. |
| [11] |
LU X, FAN Y, HU Y, et al. Spatial distribution characteristics and source analysis of shallow groundwater pollution in typical areas of Yangtze River Delta[J]. Science of the Total Environment, 2024, 906: 167369.
DOI URL |
| [12] |
RAMACHANDRAN M, SCHWABE K A, YING S C. Shallow groundwater manganese merits deeper consideration[J]. Environmental Science & Technology, 2021, 55(6): 3465-3466.
DOI URL |
| [13] |
DESIMONE L A, RANSOM K M. Manganese in the northern Atlantic coastal plain aquifer system, eastern USA — modeling regional occurrence with pH, redox, and machine learning[J]. Journal of Hydrology: Regional Studies, 2021, 37: 100925.
DOI URL |
| [14] |
LI Q, GUÉGUEN C, HAUSLADEN D M. Impact of organic carbon on manganese release, colloid formation, and aggregation in surface and groundwater[J]. Environmental Science & Technology, 2025, 59(22): 11229-11238.
DOI URL |
| [15] |
DONG W, BHATTACHARYYA A, FOX P M, et al. Geochemical controls on release and speciation of Fe(II) and Mn(II) from hyporheic sediments of East River, Colorado[J]. Frontiers in Water, 2020, 2: 562298.
DOI URL |
| [16] | 吕晓立, 刘景涛, 韩占涛, 等. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因[J]. 环境科学, 2022, 43(10): 4449-4458. |
| [17] |
MCMAHON P B, BELITZ K, REDDY J E, et al. Elevated manganese concentrations in United States groundwater: role of land surface-soil-aquifer connections[J]. Environmental Science & Technology, 2018, 53(1): 29-38.
DOI URL |
| [18] | 王瑗, 盛连喜, 李科, 等. 中国水资源现状分析与可持续发展对策研究[J]. 水资源与水工程学报, 2008(3): 10-14. |
| [19] | 张兆吉, 雒国中, 王昭, 等. 华北平原地下水资源可持续利用研究[J]. 资源科学, 2009, 31(3): 355-360. |
| [20] | 程佳豪. 鲁北平原浅层地下水污染风险研究[D]. 济南: 济南大学, 2024. |
| [21] | 许乃政, 陶小虎, 龚建师, 等. 淮河流域平原区高铁锰地下水环境健康风险评估[J]. 华东地质, 2023(2): 119-127. |
| [22] | 吴忱. 华北平原古河道研究[M]. 北京: 中国科学技术出版社, 1991. |
| [23] | 刘春华, 张光辉, 杨丽芝, 等. 黄河下游鲁北平原地下水砷浓度空间变异特征与成因[J]. 地球学报, 2013, 34(4): 470-476. |
| [24] | 张兆吉, 费宇红, 陈宗宇, 等. 华北平原地下水可持续利用调查评价[M]. 北京: 地质出版社, 2009. |
| [25] |
CAO W, ZHANG Z, FU Y, et al. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning[J]. Water Research, 2024, 259: 121848.
DOI URL |
| [26] |
PAATERO P, TAPPER U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126.
DOI URL |
| [27] |
PIPER A M. A graphic procedure in the geochemical interpretation of water analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928.
DOI URL |
| [28] |
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30.
DOI URL |
| [29] |
HOU Q, ZHANG Q, HUANG G, et al. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, South China[J]. Science of the Total Environment, 2020, 701: 134777.
DOI URL |
| [30] | 崔迪, 任帅, 鲁安怀, 等. 北京市平原区典型区域浅层地下水铁锰成因及演化规律[J/OL]. 地学前缘, 2025: 1-17[2025-10-29]. https://doi.org/10.13745/j.esf.sf.2025.3.64. |
| [31] |
ZHANG Y, YAN Y, YAO R, et al. Natural background levels, source apportionment and health risks of potentially toxic elements in groundwater of highly urbanized area[J]. Science of the Total Environment, 2024, 935: 173276.
DOI URL |
| [32] |
BROWN C J, BARLOW J R B, CRAVOTTA C A, et al. Factors affecting the occurrence of lead and manganese in untreated drinking water from Atlantic and Gulf Coastal Plain aquifers, eastern United States: dissolved oxygen and pH framework for evaluating risk of elevated concentrations[J]. Applied Geochemistry, 2019, 101: 88-102.
DOI URL |
| [33] |
LIU Y, NOT C, JIAO J J, et al. Tidal-induced dynamics and geochemical reactions of trace metals (Fe, Mn, and Sr) in the salinity transition zone of an intertidal aquifer[J]. Science of the Total Environment, 2019, 664: 1133-1149.
DOI URL |
| [34] |
RUSYDI A F, ONODERA S-I, SAITO M, et al. Vulnerability of groundwater to iron and manganese contamination in the coastal alluvial plain of a developing Indonesian city[J]. SN Applied Sciences, 2021, 3(4): 399.
DOI |
| [35] |
ZHANG Z, XIAO C, ADEYEYE O, et al. Source and mobilization mechanism of iron, manganese and arsenic in groundwater of Shuangliao City, northeast China[J]. Water, 2020, 12(2): 534.
DOI URL |
| [1] | 文章, 李一鸣, 郭绪磊, 万坦, 罗清树, 周宏. 葛洲坝库区裂隙河岸地表水-地下水交互特征[J]. 地学前缘, 2026, 33(1): 1-13. |
| [2] | 王芮, 蒋小伟, 姬韬韬. 镁同位素示踪陆地水体水岩作用:研究进展与展望[J]. 地学前缘, 2026, 33(1): 143-151. |
| [3] | 赵勇胜. 地下水污染羽的演变规律及其状态评判[J]. 地学前缘, 2026, 33(1): 152-162. |
| [4] | 姜凤, 周金龙, 周殷竹, 刘江涛, 曾妍妍, 刘钰, 丁启振. 哈密盆地绿洲区地下水污染预警研究[J]. 地学前缘, 2026, 33(1): 179-192. |
| [5] | 张博爱奇, 赵朝锐, 祝坤, 郭秋芝, 陈男, 冯传平, 胡瑜恬. 铁碳微电解耦合聚乙烯醇-海藻酸钠固定化强化地下水硫酸盐去除:功能群落调控与硫闭环回收[J]. 地学前缘, 2026, 33(1): 193-206. |
| [6] | 曲辞晓, 王明玉. 裂隙介质VOCs传输扩散通量高效预测建模框架及突破点探析[J]. 地学前缘, 2026, 33(1): 207-221. |
| [7] | 张梦凡, 蔡绪贻. 含硅水铁矿对没食子酸和铜绿假单胞菌还原地下水中Cr(VI)动力学影响[J]. 地学前缘, 2026, 33(1): 236-249. |
| [8] | 刘亚洁, 李江, 王学刚, 柯平超, 孙占学. 酸性铀污染地下水原位生物修复技术:进展与挑战[J]. 地学前缘, 2026, 33(1): 250-268. |
| [9] | 许林, 马海春, 王京平, 张庆, 黄逸航, 钱家忠, 王万林. 高地应力高温条件裂隙介质地下水非线性渗流研究进展[J]. 地学前缘, 2026, 33(1): 313-327. |
| [10] | 蒲俊兵. 岩溶地下水系统的碳循环[J]. 地学前缘, 2026, 33(1): 369-383. |
| [11] | 韩冬梅, 曹国亮, 萧怡, 宋献方. 海岸带地下水循环及其环境效应研究进展与展望[J]. 地学前缘, 2026, 33(1): 384-404. |
| [12] | 乔冈, 尹立河, 徐永, 张俊, 石长春, 余堃. 毛乌素沙地地下水动态对旱柳根系吸水的影响机制[J]. 地学前缘, 2026, 33(1): 39-49. |
| [13] | 胡立堂, 甘霖, 孙建冲, 刘宏博, 田蕾, 沈琦. 考虑参数不确定性的地下水数值模型误差补偿校正方法[J]. 地学前缘, 2026, 33(1): 432-443. |
| [14] | 毛德强, 孟健, 翟恪祥, 曾子豪, 刘士亮. 地下水污染地球物理研究进展[J]. 地学前缘, 2026, 33(1): 444-469. |
| [15] | 刘苏仪, 韩宁, 黄志勇, 郑龙群, 张翀, 宫辉力, 潘云. 基于重力卫星和基流分割方法的青藏高原东部地下水储量变化分析[J]. 地学前缘, 2026, 33(1): 470-482. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||