地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 143-151.DOI: 10.13745/j.esf.sf.2025.10.18

• 水岩相互作用及效应 • 上一篇    下一篇

镁同位素示踪陆地水体水岩作用:研究进展与展望

王芮(), 蒋小伟*(), 姬韬韬   

  1. 中国地质大学(北京) 地下水循环与环境演化教育部重点实验室, 北京 100083
  • 收稿日期:2025-07-12 修回日期:2025-08-07 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *蒋小伟(1982—),男,博士,教授,博士生导师,主要从事水文地质学的教学和科研工作。E-mail:jxw@cugb.edu.cn
  • 作者简介:王芮(1996—),女,博士研究生,主要从事金属同位素的水文地球化学应用研究。E-mail: 3005210007@email.cugb.edu.cn
  • 基金资助:
    国家自然科学基金项目(42425206);国家自然科学基金项目(42172270)

Mg isotopes for tracing water-rock interactions in terrestrial water: Research progress and prospects

WANG Rui(), JIANG Xiaowei*(), JI Taotao   

  1. Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2025-07-12 Revised:2025-08-07 Online:2026-01-25 Published:2025-11-10

摘要:

镁(Mg)通常是陆地水体中的主量元素,多种水岩反应可能引起Mg同位素明显的质量分馏,因此Mg同位素具有示踪水岩反应的潜力。本文系统综述了硅酸盐、碳酸盐、蒸发盐和雨水端员的Mg同位素组成特征,指出硅酸盐具有较大δ26Mg值,碳酸盐具有较小δ26Mg值,各种蒸发盐δ26Mg值变化范围较大,雨水δ26Mg值则常受到局地环境的制约,这些端员的混合作用决定了水体的初始δ26Mg值;黏土形成、碳酸盐沉淀、吸附和离子交换以及植物吸收等可去除水体中的Mg并产生Mg同位素分馏,其中,蒙脱石等黏土矿物形成、吸附以及植物吸收引起水体26Mg贫化,绿泥石等黏土矿物形成、离子交换和碳酸盐沉淀引起水体26Mg富集。地下水与河水的赋存环境和水岩反应时间差异也会影响水体δ26Mg值,河水更新速度快,其Mg同位素组成主要受硅酸盐与碳酸盐矿物溶解、黏土形成、离子交换等过程控制;地下水更新速度慢,水岩反应也更加充分,其Mg同位素组成还可能受吸附作用控制。在径流距离较长的区域尺度含水层中,Mg同位素可以示踪碳酸盐岩和硅酸盐岩含水层流动路径上的多种水岩反应,水岩反应类型受矿物种类控制。本文对Mg同位素在水岩反应示踪方面的应用提出展望:(1)未来可考虑与K同位素联用,加强河水中吸附作用的识别;(2)加强不同岩性、不同尺度含水层中地下水Mg同位素沿流动路径的变化规律研究。

关键词: Mg同位素, 水岩相互作用, 河水, 地下水, 同位素分馏, 吸附作用

Abstract:

Magnesium (Mg) is a major constituent of terrestrial water, and significant mass-dependent fractionation of Mg isotopes can occur during various water-rock interactions. Consequently, Mg isotopes have considerable potential for tracing these processes. This paper systematically summarizes the Mg isotopic compositions of the key reservoirs that define the initial Mg isotopic composition of natural waters, including silicates, carbonates, evaporites, and rainwater. Silicates typically exhibit high and variable δ26Mg values, whereas carbonates typically have low and relatively uniform δ26Mg values. Evaporites display a wide range of δ26Mg values depending on their mineralogy, and the δ26Mg values of rainwater are often shaped by local environmental conditions. Subsequently, geochemical processes that remove Mg from water, such as clay formation, carbonate precipitation, adsorption, cation exchange, and plant uptake, fractionate Mg isotopes. Specifically, the formation of secondary minerals like montmorillonite, adsorption onto solid surfaces, and plant uptake preferentially incorporate heavy Mg isotopes (e.g., 26Mg) into the solid/biological phase, leaving the surrounding water enriched in the light 24Mg. Conversely, the formation of chlorite, cation exchange, and carbonate precipitation can preferentially incorporate lighter Mg isotopes, leaving the water heavier. The Mg isotopic signatures of rivers and groundwater are further influenced by hydrological setting and water-rock interaction timescales. In river water, which has high renewal rates, the Mg isotopic signature is primarily shaped by silicate and carbonate dissolution, clay formation, and cation exchange. In contrast, groundwater, which typically involves longer water-rock interaction timescales, can also be significantly influenced by adsorption. Furthermore, in regional groundwater systems with long flow paths, Mg isotopes serve as effective tracers for identifying multiple water-rock interaction processes in both carbonate- and silicate-dominated aquifers; the nature of these reactions is primarily controlled by aquifer mineralogy. Future research in Mg isotope hydrogeochemistry should prioritize: (1) integrating Mg with K isotopes to better identify adsorption processes in river systems, and (2) characterizing Mg isotopic variations along flow paths in aquifers of different lithologies and scales.

Key words: Mg isotopes, water-rock interactions, river water, groundwater, isotope fractionation, adsorption

中图分类号: