

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 143-151.DOI: 10.13745/j.esf.sf.2025.10.18
收稿日期:2025-07-12
修回日期:2025-08-07
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*蒋小伟(1982—),男,博士,教授,博士生导师,主要从事水文地质学的教学和科研工作。E-mail:jxw@cugb.edu.cn
作者简介:王芮(1996—),女,博士研究生,主要从事金属同位素的水文地球化学应用研究。E-mail: 3005210007@email.cugb.edu.cn
基金资助:
WANG Rui(
), JIANG Xiaowei*(
), JI Taotao
Received:2025-07-12
Revised:2025-08-07
Online:2026-01-25
Published:2025-11-10
摘要:
镁(Mg)通常是陆地水体中的主量元素,多种水岩反应可能引起Mg同位素明显的质量分馏,因此Mg同位素具有示踪水岩反应的潜力。本文系统综述了硅酸盐、碳酸盐、蒸发盐和雨水端员的Mg同位素组成特征,指出硅酸盐具有较大δ26Mg值,碳酸盐具有较小δ26Mg值,各种蒸发盐δ26Mg值变化范围较大,雨水δ26Mg值则常受到局地环境的制约,这些端员的混合作用决定了水体的初始δ26Mg值;黏土形成、碳酸盐沉淀、吸附和离子交换以及植物吸收等可去除水体中的Mg并产生Mg同位素分馏,其中,蒙脱石等黏土矿物形成、吸附以及植物吸收引起水体26Mg贫化,绿泥石等黏土矿物形成、离子交换和碳酸盐沉淀引起水体26Mg富集。地下水与河水的赋存环境和水岩反应时间差异也会影响水体δ26Mg值,河水更新速度快,其Mg同位素组成主要受硅酸盐与碳酸盐矿物溶解、黏土形成、离子交换等过程控制;地下水更新速度慢,水岩反应也更加充分,其Mg同位素组成还可能受吸附作用控制。在径流距离较长的区域尺度含水层中,Mg同位素可以示踪碳酸盐岩和硅酸盐岩含水层流动路径上的多种水岩反应,水岩反应类型受矿物种类控制。本文对Mg同位素在水岩反应示踪方面的应用提出展望:(1)未来可考虑与K同位素联用,加强河水中吸附作用的识别;(2)加强不同岩性、不同尺度含水层中地下水Mg同位素沿流动路径的变化规律研究。
中图分类号:
王芮, 蒋小伟, 姬韬韬. 镁同位素示踪陆地水体水岩作用:研究进展与展望[J]. 地学前缘, 2026, 33(1): 143-151.
WANG Rui, JIANG Xiaowei, JI Taotao. Mg isotopes for tracing water-rock interactions in terrestrial water: Research progress and prospects[J]. Earth Science Frontiers, 2026, 33(1): 143-151.
图1 不同水体和岩石储库Mg同位素组成(引自[6,12,27,36,40-45])
Fig.1 Magnesium isotopic compositions in different water bodies and rock reservoirs. Adapted from [6,12,27,36,40-45].
图2 悬浮物的绿泥石相对含量与△26Mg悬浮物-河水值关系散点图(引自文献[57])
Fig.2 Scatter plot of the relative chlorite content in suspended matter versus the △26MgSuspend-Rivers value. Adapted from [57].
图3 麦迪逊含水层地下水δ26Mg值和Mg含量随径流距离的变化(引自[61])
Fig.3 Changes in δ26Mg values and Mg content of groundwater in the Madison Aquifer with flow distance. Adapted from [61].
图4 鄂尔多斯砂岩含水层地下水δ26Mg值和Mg含量随演化阶段的变化(改自[62])
Fig.4 Changes in δ26Mg values and Mg content of groundwater in Ordos sandstone aquifer with evolution stage. Modified after[62].
| [1] |
TIPPER E, GALY A, BICKLE M. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle[J]. Earth and Planetary Science Letters, 2006, 247(3/4): 267-279.
DOI URL |
| [2] |
CHAPELA LARA M, BUSS H L, POGGE VON STRANDMANN P A E, et al. The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered andesitic catchment[J]. Geochimica et Cosmochimica Acta, 2017, 202: 77-100.
DOI URL |
| [3] | TIPPER E T, LEMARCHAND E, HINDSHAW R S, et al. Seasonal sensitivity of weathering processes: hints from magnesium isotopes in a glacial stream[J]. Chemical Geology, 2012, 312/313: 80-92. |
| [4] |
LIU S A, TENG F Z, YANG W, et al. High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton[J]. Earth and Planetary Science Letters, 2011, 308(1): 131-140.
DOI URL |
| [5] |
SU B X, TENG F Z, HU Y, et al. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites[J]. Earth and Planetary Science Letters, 2015, 430: 523-532.
DOI URL |
| [6] |
LI W Y, TENG F Z, KE S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6867-6884.
DOI URL |
| [7] |
GUO B, ZHU X, DONG A, et al. Mg isotopic systematics and geochemical applications: a critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385.
DOI |
| [8] |
POGGE VON STRANDMANN P A E, BURTON K W, JAMES R H, et al. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain[J]. Earth and Planetary Science Letters, 2008, 276(1/2): 187-197.
DOI URL |
| [9] |
TENG F Z, LI W Y, RUDNICK R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 63-71.
DOI URL |
| [10] |
LIU X M, TENG F Z, RUDNICK R L, et al. Massive magnesium depletion and isotope fractionation in weathered basalts[J]. Geochimica et Cosmochimica Acta, 2014, 135: 336-349.
DOI URL |
| [11] |
FRIES D M, JAMES R H, DESSERT C, et al. The response of Li and Mg isotopes to rain events in a highly-weathered catchment[J]. Chemical Geology, 2019, 519: 68-82.
DOI URL |
| [12] |
HUANG K J, TENG F Z, WEI G J, et al. Adsorption-and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China[J]. Earth and Planetary Science Letters, 2012, 359-360: 73-83.
DOI URL |
| [13] |
OI T, SATOSHI Y, KAKIHANA H. Magnesium isotope fractionation in cation-exchange chromatography[J]. Separation Science and Technology, 1987, 22(11): 2203-2215.
DOI URL |
| [14] |
GAO T, KE S, WANG S J, et al. Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides[J]. Geochimica et Cosmochimica Acta, 2018, 237: 205-222.
DOI URL |
| [15] |
MAVROMATIS V, GAUTIER Q, BOSC O, et al. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 2013, 114: 188-203.
DOI URL |
| [16] |
LI W, CHAKRABORTY S, BEARD B L, et al. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions[J]. Earth and Planetary Science Letters, 2012, 333/334: 304-316.
DOI URL |
| [17] |
FAN B, ZHAO Z Q, TAO F, et al. The geochemical behavior of Mg isotopes in the Huanghe basin, China[J]. Chemical Geology, 2016, 426: 19-27.
DOI URL |
| [18] | 柯珊, 刘盛遨, 李王晔, 等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2): 383-397. |
| [19] |
YOUNG E D, GALY A. The isotope geochemistry and cosmochemistry of magnesium[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 197-230.
DOI URL |
| [20] | CATANZARO E J, MURPHY T J. Magnesium isotope ratios in natural samples[J]. Journal of Geophysical Research (1896-1977), 1966, 71(4): 1271-1274. |
| [21] |
GALY A, BELSHAW N S, HALICZ L, et al. High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1): 89-98.
DOI URL |
| [22] |
GALY A, YOFFE O, JANNEY P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(11): 1352-1356.
DOI URL |
| [23] |
HINDSHAW R S, TEISSERENC R, LE DANTEC T, et al. Seasonal change of geochemical sources and processes in the Yenisei River: a Sr, Mg and Li isotope study[J]. Geochimica et Cosmochimica Acta, 2019, 255: 222-236.
DOI URL |
| [24] |
RYU J S, VIGIER N, DECARREAU A, et al. Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation[J]. Chemical Geology, 2016, 445: 135-145.
DOI URL |
| [25] |
LIU S A, TENG F Z, HE Y, et al. Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust[J]. Earth and Planetary Science Letters, 2010, 297(3): 646-654.
DOI URL |
| [26] |
HUANG K J, TENG F Z, ELSENOUY A, et al. Magnesium isotopic variations in loess: origins and implications[J]. Earth and Planetary Science Letters, 2013, 374: 60-70.
DOI URL |
| [27] |
OPFERGELT S, GEORG R B, DELVAUX B, et al. Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe[J]. Earth and Planetary Science Letters, 2012, 341-344: 176-185.
DOI URL |
| [28] |
GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: insight from speleothem formation[J]. Earth and Planetary Science Letters, 2002, 201: 105-115.
DOI URL |
| [29] |
FENG C, GAO C, YIN Q Z, et al. Tracking physicochemical conditions of evaporite deposition by stable magnesium isotopes: a case study of late Permian langbeinites[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2615-2630.
DOI URL |
| [30] |
XIA Z, LIN Y, LI D, et al. Equilibrium Mg and K isotope fractionation between carnallite and saturated brine: calibrations and applications[J]. Geochimica et Cosmochimica Acta, 2024, 371: 173-188.
DOI URL |
| [31] |
SHALEV N, LAZAR B, HALICZ L, et al. The Mg isotope signature of marine Mg-evaporites[J]. Geochimica et Cosmochimica Acta, 2021, 301: 30-47.
DOI URL |
| [32] |
XIA Z, HORITA J, REUNING L, et al. Extracting Mg isotope signatures of ancient seawater from marine halite: a reconnaissance[J]. Chemical Geology, 2020, 552: 119768.
DOI URL |
| [33] |
XIA Z, LIN Y, WEI H, et al. Reconstruct hydrological history of terrestrial saline lakes using Mg isotopes in halite: a case study of the Quaternary Dalangtan playa in Qaidam Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 587: 110804.
DOI URL |
| [34] |
LARA M C, BUSS H L, STRANDMANN P A E P V, et al. Controls on the Mg cycle in the Tropics: insights from a case study at the Luquillo Critical Zone Observatory[J]. Procedia Earth and Planetary Science, 2014, 10: 200-203.
DOI URL |
| [35] |
DESSERT C, LAJEUNESSE E, LLORET E, et al. Controls on chemical weathering on a mountainous volcanic tropical island: Guadeloupe (French West Indies)[J]. Geochimica et Cosmochimica Acta, 2015, 171: 216-237.
DOI URL |
| [36] |
TIPPE E T, GAILLARDET J, LOUVAT P, et al. Mg isotope constraints on soil pore-fluid chemistry: evidence from Santa Cruz, California[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3883-3896.
DOI URL |
| [37] |
BOLOU-BI E B, VIGIER N, POSZWA A, et al. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France)[J]. Geochimica et Cosmochimica Acta, 2012, 87: 341-355.
DOI URL |
| [38] |
KIMMIG S R, HOLMDEN C, BéLANGER N. Biogeochemical cycling of Mg and its isotopes in a sugar maple forest in Québec[J]. Geochimica et Cosmochimica Acta, 2018, 230: 60-82.
DOI URL |
| [39] |
STUUT J B, SMALLEY I, O’HARA-DHAND K. Aeolian dust in Europe: African sources and European deposits[J]. Quaternary International, 2009, 198(1): 234-245.
DOI URL |
| [40] |
RIECHELMANN S, BUHL D, SCHRÖDER-RITZRAU A, et al. Hydrogeochemistry and fractionation pathways of Mg isotopes in a continental weathering system: lessons from field experiments[J]. Chemical Geology, 2012, 300/301: 109-122.
DOI URL |
| [41] |
IMMENHAUSER A, BUHL D, RICHTER D, et al. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave: field study and experiments[J]. Geochimica et Cosmochimica Acta, 2010, 74(15): 4346-4364.
DOI URL |
| [42] |
TIPPER E T, CALMELS D, GAILLARDET J, et al. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J]. Earth and Planetary Science Letters, 2012, 333/334: 35-45.
DOI URL |
| [43] |
BRENOT A, CLOQUET C, VIGIER N, et al. Magnesium isotope systematics of the lithologically varied Moselle river basin, France[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 5070-5089.
DOI URL |
| [44] |
BREWER A, TENG F Z, DETHIER D. Magnesium isotope fractionation during granite weathering[J]. Chemical Geology, 2018, 501: 95-103.
DOI URL |
| [45] | Gou L F, Jin Z D, Galy A, et al. Seasonal Mg isotopic variation in the middle Yellow River: sources and fractionation[J]. Chemical Geology, 2023, 619:12134. |
| [46] |
MA L, TENG F Z, JIN L, et al. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: accumulation of light Mg isotopes in soils by clay mineral transformation[J]. Chemical Geology, 2015, 397: 37-50.
DOI URL |
| [47] |
WIMPENNY J, GíSLASON S R, JAMES R H, et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5259-5279.
DOI URL |
| [48] |
HINDSHAW R S, TOSCA R, TOSCA N J, et al. Experimental constraints on Mg isotope fractionation during clay formation: implications for the global biogeochemical cycle of Mg[J]. Earth and Planetary Science Letters, 2020, 531: 115980.
DOI URL |
| [49] |
WIMPENNY J, COLLA C A, YIN Q Z, et al. Investigating the behaviour of Mg isotopes during the formation of clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 128: 178-194.
DOI URL |
| [50] |
ZHAO T, LIU W, XU Z, et al. The influence of carbonate precipitation on riverine magnesium isotope signals: new constrains from Jinsha River Basin, Southeast Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2019, 248: 172-184.
DOI URL |
| [51] |
GAO T, KE S, TENG F Z, et al. Magnesium isotope fractionation during dolostone weathering[J]. Chemical Geology, 2016, 445: 14-23.
DOI URL |
| [52] |
TROSTLE K, DERRY L, VIGIER N, et al. Magnesium isotope fractionation during arid pedogenesis on the island of Hawaii (USA)[J]. Procedia Earth and Planetary Science, 2014, 10: 243-248.
DOI URL |
| [53] |
POGGE VON STRANDMANN P A E, OPFERGELT S, LAI Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters, 2012, 339/340: 11-23.
DOI URL |
| [54] |
BOLOU-BI E B, POSZWA A, LEYVAL C, et al. Experimental determination of magnesium isotope fractionation during higher plant growth[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2523-2537.
DOI URL |
| [55] |
MAVROMATIS V, PORCELLI D, ANDERSSON P S, et al. Lithological controls of the Mg isotope composition of the Lena River across seasons and its impact on the annual isotope flux to the Arctic Ocean[J]. Chemical Geology, 2024, 648: 121957.
DOI URL |
| [56] |
XU Y, JIN Z, GOU L F, et al. Carbonate weathering dominates magnesium isotopes in large rivers: clues from the Yangtze River[J]. Chemical Geology, 2022, 588: 120677.
DOI URL |
| [57] | ZHAO T, LIU W, XU Z. Magnesium isotope fractionation during silicate weathering: constrains from riverine Mg isotopic composition in the southeastern Coastal Region of China[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(4): e2021GC010100. |
| [58] |
XU Y, JIN Z, GOU L F, et al. Cation exchange controls riverine magnesium isotopes in extremely-high-erosion catchments[J]. Geochimica et Cosmochimica Acta, 2023, 363: 1-14.
DOI URL |
| [59] | TIPPER E T, STEVENSON E I, ALCOCK V, et al. Global silicate weathering flux overestimated because of sediment-water cation exchange[J]. Proceedings of the National Academy of Sciences, 2021, 118(1): e2016430118. |
| [60] |
BOLOU-BI B E, LEGOUT A, LAUDON H, et al. Use of stable Mg isotope ratios in identifying the base cation sources of stream water in the boreal Krycklan catchment (Sweden)[J]. Chemical Geology, 2022, 588: 120651.
DOI URL |
| [61] |
JACOBSON A D, ZHANG Z, LUNDSTROM C, et al. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 446-452.
DOI URL |
| [62] |
ZHANG H, JIANG X W, WAN L, et al. Fractionation of Mg isotopes by clay formation and calcite precipitation in groundwater with long residence times in a sandstone aquifer, Ordos Basin, China[J]. Geochimica et Cosmochimica Acta, 2018, 237: 261-274.
DOI URL |
| [63] |
JI T T, JIANG X W, GOU L F, et al. Behaviors of lithium and its isotopes in groundwater with different concentrations of dissolved CO2[J]. Geochimica et Cosmochimica Acta, 2022, 326: 313-327.
DOI URL |
| [64] | 姬韬韬, 蒋小伟. 钾稳定同位素在水文地球化学领域的研究进展与展望[J]. 水文地质工程地质, 2023, 50(5): 10-19. |
| [1] | 文章, 李一鸣, 郭绪磊, 万坦, 罗清树, 周宏. 葛洲坝库区裂隙河岸地表水-地下水交互特征[J]. 地学前缘, 2026, 33(1): 1-13. |
| [2] | 郭记菊, 曹文庚, 鲁重生, 王哲, 朱静思, 王妍妍, 李祥志, 马翠艳. 鲁北平原浅层地下水锰空间演化及成因机制[J]. 地学前缘, 2026, 33(1): 107-120. |
| [3] | 赵勇胜. 地下水污染羽的演变规律及其状态评判[J]. 地学前缘, 2026, 33(1): 152-162. |
| [4] | 姜凤, 周金龙, 周殷竹, 刘江涛, 曾妍妍, 刘钰, 丁启振. 哈密盆地绿洲区地下水污染预警研究[J]. 地学前缘, 2026, 33(1): 179-192. |
| [5] | 张博爱奇, 赵朝锐, 祝坤, 郭秋芝, 陈男, 冯传平, 胡瑜恬. 铁碳微电解耦合聚乙烯醇-海藻酸钠固定化强化地下水硫酸盐去除:功能群落调控与硫闭环回收[J]. 地学前缘, 2026, 33(1): 193-206. |
| [6] | 曲辞晓, 王明玉. 裂隙介质VOCs传输扩散通量高效预测建模框架及突破点探析[J]. 地学前缘, 2026, 33(1): 207-221. |
| [7] | 张梦凡, 蔡绪贻. 含硅水铁矿对没食子酸和铜绿假单胞菌还原地下水中Cr(VI)动力学影响[J]. 地学前缘, 2026, 33(1): 236-249. |
| [8] | 刘亚洁, 李江, 王学刚, 柯平超, 孙占学. 酸性铀污染地下水原位生物修复技术:进展与挑战[J]. 地学前缘, 2026, 33(1): 250-268. |
| [9] | 许林, 马海春, 王京平, 张庆, 黄逸航, 钱家忠, 王万林. 高地应力高温条件裂隙介质地下水非线性渗流研究进展[J]. 地学前缘, 2026, 33(1): 313-327. |
| [10] | 蒲俊兵. 岩溶地下水系统的碳循环[J]. 地学前缘, 2026, 33(1): 369-383. |
| [11] | 韩冬梅, 曹国亮, 萧怡, 宋献方. 海岸带地下水循环及其环境效应研究进展与展望[J]. 地学前缘, 2026, 33(1): 384-404. |
| [12] | 乔冈, 尹立河, 徐永, 张俊, 石长春, 余堃. 毛乌素沙地地下水动态对旱柳根系吸水的影响机制[J]. 地学前缘, 2026, 33(1): 39-49. |
| [13] | 胡立堂, 甘霖, 孙建冲, 刘宏博, 田蕾, 沈琦. 考虑参数不确定性的地下水数值模型误差补偿校正方法[J]. 地学前缘, 2026, 33(1): 432-443. |
| [14] | 毛德强, 孟健, 翟恪祥, 曾子豪, 刘士亮. 地下水污染地球物理研究进展[J]. 地学前缘, 2026, 33(1): 444-469. |
| [15] | 刘苏仪, 韩宁, 黄志勇, 郑龙群, 张翀, 宫辉力, 潘云. 基于重力卫星和基流分割方法的青藏高原东部地下水储量变化分析[J]. 地学前缘, 2026, 33(1): 470-482. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||