地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 250-268.DOI: 10.13745/j.esf.sf.2025.10.36

• 污染水文地质 • 上一篇    下一篇

酸性铀污染地下水原位生物修复技术:进展与挑战

刘亚洁1,2(), 李江1,3, 王学刚1,2, 柯平超1,2, 孙占学1,2,*()   

  1. 1.铀资源探采与核遥感全国重点实验室, 东华理工大学, 江西 南昌 330038
    2.地下水污染成因与修复江西省重点实验室, 江西 南昌 330038
    3.东华理工大学 理学院, 江西 抚州 344000
  • 收稿日期:2025-06-09 修回日期:2025-10-02 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *孙占学(1962—),男,博士,教授,博士生导师,主要从事水文地球化学、铀矿采冶与环境修复技术研究。E-mail: zhxsun@ecut.edu.cn
  • 作者简介:刘亚洁(1967—),女,教授,主要从事环境生物技术、生物冶金研究。E-mail: lyj008@126.com
  • 基金资助:
    国家自然科学基金重点项目(42430716);国家核设施退役及放射性废物治理科研项目(1276);中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目(2022NRE-LH-20);东华理工大学科研发展基金项目(2190301102);东华理工大学科研发展基金项目(2190301087)

In-situ bioremediation of acidic uranium-contaminated groundwater: Development and challenges

LIU Yajie1,2(), LI Jiang1,3, WANG Xuegang1,2, KE Pingchao1,2, SUN Zhanxue1,2,*()   

  1. 1. National Key Laboratory of Uranium Resource Exploration-Minging and Nuclear Remote Sensing, East China University of Technology, Nanchang 330038, China
    2. Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, Nanchang 330038, China
    3. School of Science, East China University of Technology, Fuzhou 344000, China
  • Received:2025-06-09 Revised:2025-10-02 Online:2026-01-25 Published:2025-11-10

摘要:

酸性铀污染地下水是全球亟待解决的重大环境问题。原位生物修复因其经济性与可持续性等优势,成为极具潜力的治理策略。本文系统解析酸性铀污染地下水原位生物修复的技术原理、现存问题与发展方向:追溯铀采冶活动引发的酸性污染成因,阐释金属还原微生物作用的代谢特征及原位修复技术发展历程,评述生物还原(核心)、生物矿化(稳定固化)、生物吸附(快速截留)和生物累积(资源化潜力)等多元固铀机制;剖析极端酸性环境(pH<4.0)、竞争性电子受体(硝酸盐等)、寡营养环境、微生物群落动态演替及U(IV)产物稳定性等关键制约因素,提出针对性解决策略;未来应以自主适应微生物群落构建、稳定性强化技术(如晶态U(IV)生成调控)与多机制协同融合(生物-化学耦合、电子供体智能投送等)的创新研究为方向,以提升复杂酸性系统中修复效能与长效性。

关键词: 铀污染, 酸性地下水, 原位生物修复, 铀固化机制, 挑战

Abstract:

Acidic uranium-contaminated groundwater represents a significant and urgent environmental issue worldwide. Due to its cost-effectiveness and sustainability, in situ bioremediation has emerged as a promising mitigation strategy. This review systematically analyzes the technical principles, existing challenges, and future directions for in situ bioremediation of this environmental challenge. We begin by tracing the genesis of acidic uranium-contaminated water from uranium mining and milling activities, elucidating microbial reduction mechanisms, and outlining the evolution of in situ remediation technologies. Key uranium immobilization mechanisms - including bioreduction (the core pathway), biomineralization (for stable sequestration), biosorption (enabling rapid retention), and bioaccumulation (with resource recovery potential - are critically examined. This review also analyzes critical constraints such as extreme acidity (pH<4.0), the presence of competitive electron acceptors (e.g., nitrate), oligotrophic conditions, dynamic microbial community succession, and the stability risks of U(IV), proposing targeted countermeasures for each. Future research should prioritize: (1) developing self-adaptive microbial consortia, (2) enhancing long-term stability through the promotion of crystalline U(IV) phases, and (3) establishing synergistic systems that integrate multiple mechanisms (e.g., bio-chemical coupling and smart electron donor delivery). These innovations are crucial for advancing the efficacy and longevity of in situ bioremediation in complex acidic environments.

Key words: uranium contamination, acid groundwater, in situ bioremediation, uranium immobilization mechanisms, challenges

中图分类号: