

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 236-249.DOI: 10.13745/j.esf.sf.2025.10.13
收稿日期:2025-07-20
修回日期:2025-09-07
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*蔡绪贻(1965—),男,博士,副教授,硕士生导师,主要从事水文地质学的教学和科研工作。E-mail: 2079326581@qq.com
作者简介:张梦凡(2000—),女,硕士研究生,主要从事环境生态水利研究。E-mail: mengfan0040@163.com
基金资助:Received:2025-07-20
Revised:2025-09-07
Online:2026-01-25
Published:2025-11-10
摘要:
多酚和铜绿假单胞菌是还原和固定Cr(VI)常用的不易产生二次污染的修复剂。这一过程的动力学受各种环境因素的控制,但这些因素对Cr(VI)修复转化的影响尚不清楚。本研究聚焦于在地下水环境中其表面受硅离子掺杂与改造的水铁矿颗粒,对多酚和细菌还原Cr(VI)的动力学影响。通过构建不同还原六价铬体系(包括二元、三元、四元)的室内对比批实验,探究水铁矿表面的硅离子掺杂程度对该过程的作用。三元体系(含硅水铁矿-多酚或细菌- Cr(VI))显示,多酚与Cr(VI)的快速络合还原显著提升了初期去除效率(最高可达 87%),但后期依赖含硅水铁矿的持续吸附能力;细菌通过分泌胞外代谢产物(EPS)促进 Cr(VI)的还原与稳定化,降低了硅掺杂影响水铁矿对Cr(VI) 吸附的敏感性。四元体系(含硅水铁矿-多酚-细菌- Cr(VI))中,多酚-细菌协同抵消部分硅掺杂的抑制作用,维持更高 Cr(VI) 去除效率,多酚发生降解或被氧化,含硅水铁矿为细菌提供栖息环境。
中图分类号:
张梦凡, 蔡绪贻. 含硅水铁矿对没食子酸和铜绿假单胞菌还原地下水中Cr(VI)动力学影响[J]. 地学前缘, 2026, 33(1): 236-249.
ZHANG Mengfan, CAI Xuyi. Effect of silicon-doped ferrihydrite on the kinetics of Cr(VI) reduction by gallic acid and Pseudomonas aeruginosa in groundwater[J]. Earth Science Frontiers, 2026, 33(1): 236-249.
| 体系组成 | Si/Fe物质的量之比 | |||
|---|---|---|---|---|
| 0 | 0.1 | 0.25 | 0.50 | |
| Si-Fh-Cr(VI) | 80% | 53% | 0% | 0% |
| GA-Cr(VI) | 52% | |||
| Si-Fh-GA-Cr(VI) | 87% | 54% | 46% | 42% |
表1 不同体系Cr(VI)去除率
Table 1 Cr(VI) removal efficiencies in different systems
| 体系组成 | Si/Fe物质的量之比 | |||
|---|---|---|---|---|
| 0 | 0.1 | 0.25 | 0.50 | |
| Si-Fh-Cr(VI) | 80% | 53% | 0% | 0% |
| GA-Cr(VI) | 52% | |||
| Si-Fh-GA-Cr(VI) | 87% | 54% | 46% | 42% |
| 第一阶段 | 第二阶段 | |||||||
|---|---|---|---|---|---|---|---|---|
| 动力学模型 | 体系组成 | k1/h-1 | R2 | k1/h-1 | R2 | |||
| k2/(L·mg-1·h-1) | k2/(L·mg-1·h-1) | |||||||
| 一级动力学 | Si/Fe=0-GA | 0.080 6 | 0.164 9 | 0.032 2 | 0.969 4 | |||
| Si/Fe=0.1-GA | -0.019 3 | 0.015 5 | 0.003 8 | 0.598 5 | ||||
| Si/Fe=0.25-GA | -0.015 6 | 0.011 2 | 0.001 7 | 0.112 0 | ||||
| Si/Fe=0.50-GA | 0.008 4 | 0.003 3 | -0.008 4 | 0.894 0 | ||||
| 一级动力学 | Si/Fe=0-细菌 | 0.008 5 | 0.940 2 | 0.030 3 | 0.979 9 | |||
| Si/Fe=0.1-细菌 | 0.008 5 | 0.986 7 | 0.026 3 | 0.990 7 | ||||
| Si/Fe=0.25-细菌 | 0.008 6 | 0.989 9 | 0.018 9 | 0.975 8 | ||||
| Si/Fe=0.50-细菌 | 0.008 8 | 0.983 3 | 0.018 3 | 0.944 8 | ||||
| 二级动力学 | Si/Fe=0-GA | 0.004 3 | 0.221 1 | 0.005 0 | 0.990 2 | |||
| Si/Fe=0.1-GA | -0.001 9 | 0.100 5 | 0.000 2 | 0.485 5 | ||||
| Si/Fe=0.25-GA | -0.001 6 | 0.089 0 | 0.000 1 | 0.261 4 | ||||
| Si/Fe=0.50-GA | -0.000 7 | 0.016 0 | -0.000 4 | 0.894 2 | ||||
| 二级动力学 | Si/Fe=0-细菌 | 0.000 5 | 0.955 6 | 0.006 0 | 0.922 7 | |||
| Si/Fe=0.1-细菌 | 0.000 4 | 0.967 8 | 0.006 0 | 0.918 3 | ||||
| Si/Fe=0.25-细菌 | 0.000 4 | 0.991 5 | 0.003 0 | 0.904 0 | ||||
| Si/Fe=0.50-细菌 | 0.000 4 | 0.993 3 | 0.002 7 | 0.860 8 | ||||
表2 含硅水铁矿-多酚/细菌-Cr(VI)体系对Cr(VI)还原动力学拟合参数
Table 2 Kinetic fitting parameters for Cr(VI) reduction in the Si-containing ferrihydrite-polyphenol/bacteria-Cr(VI) systems
| 第一阶段 | 第二阶段 | |||||||
|---|---|---|---|---|---|---|---|---|
| 动力学模型 | 体系组成 | k1/h-1 | R2 | k1/h-1 | R2 | |||
| k2/(L·mg-1·h-1) | k2/(L·mg-1·h-1) | |||||||
| 一级动力学 | Si/Fe=0-GA | 0.080 6 | 0.164 9 | 0.032 2 | 0.969 4 | |||
| Si/Fe=0.1-GA | -0.019 3 | 0.015 5 | 0.003 8 | 0.598 5 | ||||
| Si/Fe=0.25-GA | -0.015 6 | 0.011 2 | 0.001 7 | 0.112 0 | ||||
| Si/Fe=0.50-GA | 0.008 4 | 0.003 3 | -0.008 4 | 0.894 0 | ||||
| 一级动力学 | Si/Fe=0-细菌 | 0.008 5 | 0.940 2 | 0.030 3 | 0.979 9 | |||
| Si/Fe=0.1-细菌 | 0.008 5 | 0.986 7 | 0.026 3 | 0.990 7 | ||||
| Si/Fe=0.25-细菌 | 0.008 6 | 0.989 9 | 0.018 9 | 0.975 8 | ||||
| Si/Fe=0.50-细菌 | 0.008 8 | 0.983 3 | 0.018 3 | 0.944 8 | ||||
| 二级动力学 | Si/Fe=0-GA | 0.004 3 | 0.221 1 | 0.005 0 | 0.990 2 | |||
| Si/Fe=0.1-GA | -0.001 9 | 0.100 5 | 0.000 2 | 0.485 5 | ||||
| Si/Fe=0.25-GA | -0.001 6 | 0.089 0 | 0.000 1 | 0.261 4 | ||||
| Si/Fe=0.50-GA | -0.000 7 | 0.016 0 | -0.000 4 | 0.894 2 | ||||
| 二级动力学 | Si/Fe=0-细菌 | 0.000 5 | 0.955 6 | 0.006 0 | 0.922 7 | |||
| Si/Fe=0.1-细菌 | 0.000 4 | 0.967 8 | 0.006 0 | 0.918 3 | ||||
| Si/Fe=0.25-细菌 | 0.000 4 | 0.991 5 | 0.003 0 | 0.904 0 | ||||
| Si/Fe=0.50-细菌 | 0.000 4 | 0.993 3 | 0.002 7 | 0.860 8 | ||||
| 体系组成 | Si/Fe物质的量之比 | |||
|---|---|---|---|---|
| 0 | 0.1 | 0.25 | 0.50 | |
| Si-Fh-GA- Cr(VI) | 88% | 53% | 48% | 43% |
| Si-Fh-细菌- Cr(VI) | 51% | 42% | 43% | 44% |
| GA-细菌- Cr(VI) | 96% | |||
| Si-Fh-GA-细菌- Cr(VI) | 99% | 99% | 97% | 98% |
表3 平衡50 h不同体系Cr(VI)去除率
Table 3 Cr(VI) removal efficiency in different systems after 50 h of equilibrium
| 体系组成 | Si/Fe物质的量之比 | |||
|---|---|---|---|---|
| 0 | 0.1 | 0.25 | 0.50 | |
| Si-Fh-GA- Cr(VI) | 88% | 53% | 48% | 43% |
| Si-Fh-细菌- Cr(VI) | 51% | 42% | 43% | 44% |
| GA-细菌- Cr(VI) | 96% | |||
| Si-Fh-GA-细菌- Cr(VI) | 99% | 99% | 97% | 98% |
图7 Si/Fe为0.1或0.50的Si-Fh四元体系反应体系表征结果 (a)反应后紫外谱图;(b)反应后固相Cr元素XPS表征谱图;(c)Si/Fe=0.1反应后固相SEM图;(d)Si/Fe=0.50反应后固相SEM图;(e)体系多酚浓度随时间变化图。
Fig.7 Characterization results of the quaternary Si-Fh systems with Si/Fe ratios of 0.1 and 0.50
| 动力学模型 | 体系组成 | 第一阶段 | 第二阶段 | ||
|---|---|---|---|---|---|
| k1/h-1 | R2 | k1/h-1 | R2 | ||
| k2/(L·mg-1·h-1) | k2/(L·mg-1·h-1) | ||||
| 一级动力学 | Si/Fe=0-GA-细菌 | 0.096 7 | 0.899 8 | 0.011 6 | 0.750 0 |
| Si/Fe=0.1-GA-细菌 | 0.077 5 | 0.870 6 | 0.017 8 | 0.939 3 | |
| Si/Fe=0.25-GA-细菌 | 0.073 7 | 0.874 5 | 0.009 8 | 0.750 0 | |
| Si/Fe=0.50-GA-细菌 | 0.089 7 | 0.899 2 | — | — | |
| 二级动力学 | Si/Fe=0-GA-细菌 | 0.023 3 | 0.949 0 | 0.031 6 | 0.853 3 |
| Si/Fe=0.1-GA-细菌 | 0.010 4 | 0.940 2 | 0.028 9 | 0.963 1 | |
| Si/Fe=0.25-GA-细菌 | 0.009 7 | 0.943 3 | 0.013 9 | 0.805 0 | |
| Si/Fe=0.50-GA-细菌 | 0.014 1 | 0.925 8 | 0.014 9 | 0.333 0 | |
表4 含硅水铁矿-GA-细菌-Cr(VI)体系对Cr(VI)还原动力学拟合参数
Table 4 Kinetic-fitting parameters for Cr(VI) reduction in the Si-containing ferrihydrite-GA-bacteria-Cr(VI) system
| 动力学模型 | 体系组成 | 第一阶段 | 第二阶段 | ||
|---|---|---|---|---|---|
| k1/h-1 | R2 | k1/h-1 | R2 | ||
| k2/(L·mg-1·h-1) | k2/(L·mg-1·h-1) | ||||
| 一级动力学 | Si/Fe=0-GA-细菌 | 0.096 7 | 0.899 8 | 0.011 6 | 0.750 0 |
| Si/Fe=0.1-GA-细菌 | 0.077 5 | 0.870 6 | 0.017 8 | 0.939 3 | |
| Si/Fe=0.25-GA-细菌 | 0.073 7 | 0.874 5 | 0.009 8 | 0.750 0 | |
| Si/Fe=0.50-GA-细菌 | 0.089 7 | 0.899 2 | — | — | |
| 二级动力学 | Si/Fe=0-GA-细菌 | 0.023 3 | 0.949 0 | 0.031 6 | 0.853 3 |
| Si/Fe=0.1-GA-细菌 | 0.010 4 | 0.940 2 | 0.028 9 | 0.963 1 | |
| Si/Fe=0.25-GA-细菌 | 0.009 7 | 0.943 3 | 0.013 9 | 0.805 0 | |
| Si/Fe=0.50-GA-细菌 | 0.014 1 | 0.925 8 | 0.014 9 | 0.333 0 | |
图8 含硅水铁矿对多酚-细菌协同还原Cr(VI)动力学影响机制
Fig.8 Mechanism by which Si-containing ferrihydrite influences the kinetics of polyphenol-bacteria synergistic Cr(VI) reduction
| [1] | 生态环境部土壤生态环境司, 生态环境部土壤与农业农村生态环境监管技术中心, 生态环境部南京环境科学研究所. 地下水污染风险管控与修复技术手册[M]. 北京: 中国环境出版集团, 2021. |
| [2] |
郭华明, 尹嘉鸿, 严松, 等. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399.
DOI |
| [3] | 王兴润, 李磊, 颜湘华. 铬污染场地修复技术进展[J]. 环境工程, 2020, 38(6): 1-8. |
| [4] |
FANG Q, LU A, HONG H, et al. Mineral weathering is linked to microbial priming in the critical zone[J]. Nature Communications, 2023, 14(1): 345-345.
DOI |
| [5] |
MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247: 125902.
DOI URL |
| [6] |
ZHANG H, LU Y, OUYANG Z, et al. Mechanistic insights into the detoxification of Cr(VI) and immobilization of Cr and C during the biotransformation of ferrihydrite-polygalacturonic acid-Cr coprecipitates[J]. Journal of Hazardous Materials, 2023, 448: 130726.
DOI URL |
| [7] |
ZHU D, ZHANG M, CHEN J, et al. Synergism between goethite size and extracellular polymeric substances (EPS) in the formation of mineral-mineral and organo-mineral complexes of soil microaggregates[J]. Geoderma, 2022, 410: 115650.
DOI URL |
| [8] |
CHILDS C W. Ferrihydrite: A review of structure, properties and occurrence in relation to soils[J]. Zeitschrift für Pflanzenernährung und Bodenkunde, 1992, 155(5): 441-448.
DOI URL |
| [9] |
HENMI T, WELLS N, CHILDS C W, et al. Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes[J]. Geochim et Cosmochim Acta, 1980, 44(2): 365-372.
DOI URL |
| [10] |
SEEHRA M S, ROY P, RAMAN A, et al. Structural investigations of synthetic ferrihydrite nanoparticles doped with Si[J]. Solid State Communications, 2004, 130(9): 597-601.
DOI URL |
| [11] |
HASHIMOTO H, UKITA M, SAKUMA R, et al. Bio-inspired 2-line ferrihydrite as a high-capacity and high-rate-capability anode material for lithium-ion batteries[J]. Journal of Power Sources, 2016, 328: 503-509.
DOI URL |
| [12] |
HASHIMOTO H, NISHIYAMA Y, UKITA M, et al. Lithium storage properties of a bioinspired 2-Line ferrihydrite: a silicon-doped, nanometric, and amorphous iron oxyhydroxide[J]. Inorganic Chemistry, 2015, 54(15): 7593-7599.
DOI PMID |
| [13] | ROY P. Magnetic properties of silicon-doped ferrihydrite nanoparticles[D]. West Virginia: West Virginia University, 2000. |
| [14] |
CAMPBELL A S, SCHWERTMANN U, STANJEK H, et al. Si incorporation into hematite by heating Si-Ferrihydrite[J]. Langmuir, 2002, 18(21): 7804-7809.
DOI URL |
| [15] |
MAMUN A A, MORITA M, MATSUOKA M, et al. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution[J]. Journal of Hazardous Materials, 2017, 334(2): 142-149.
DOI URL |
| [16] |
CHEN Z, SHEN J H, XU X Q, et al. Adsorption of antibiotic, heavy metal and antibiotic plasmid by a wet-state silicon-rich biochar/ferrihydrite composite to inhibit antibiotic resistance gene proliferation/transformation[J]. Chemosphere, 2023, 324: 138356.
DOI URL |
| [17] |
GONG Y F, SU Y M, ZHANG Y L, et al. Biological reduction of ferrihydrite with silica addition: rates and controlling mechanisms[J]. ACS Earth and Space Chemistry, 2021, 5(10): 2778-2791.
DOI URL |
| [18] |
SONG Y R, ZHAO Z J, LI J, et al. Preparation of silicon-doped ferrihydrite for adsorption of lead and cadmium Property and mechanism[J]. Chinese Chemical Letters, 2021, 32(10): 3169-3174.
DOI URL |
| [19] | 巴桑措姆, 陆小静. 地下水六价铬二苯碳酰二肼分光光度法的方法验证[J]. 中文科技期刊数据库(全文版)自然科学, 2025(4): 90-94. |
| [20] | 杨继伟. 甘蔗果酒发酵过程褐变机理及其控制研究[D]. 南宁: 广西大学, 2017. |
| [21] | 陈明生, 黄艳, 林霄, 等. 高效液相色谱法测定互叶白千层中没食子酸的含量[J]. 广西科学, 2012(1): 71-73. |
| [22] | 刘婉婷. rGO/nZVI原位修复硝酸盐六价铬复合污染地下水研究[D]. 长春: 吉林大学, 2021. |
| [23] | 徐嘉礼. 矿物复合材料协同微生物原位修复地下水中Cr(Ⅵ)污染的研究[D]. 绍兴: 绍兴文理学院, 2020. |
| [24] | 杨潘青. 活性炭-零价铁-降解菌耦合固定化协同去除水中亚硝胺和六价铬的研究[D]. 新乡: 河南师范大学, 2021. |
| [25] |
DYER L, FAWELL P D, NEWMAN O M, et al. Synthesis and characterisation of ferrihydrite/silica co-precipitates(Article)[J]. Journal of Colloid and Interface Science, 2010, 348(1): 65-70.
DOI PMID |
| [26] |
MICHEL F M, EHM L, LIU G, et al. Similarities in 2- and 6-line ferrihydrite based on pair distribution function analysis of X-ray total scattering[J]. Chemistry of Materials, 2007, 19(6): 1489-1496.
DOI URL |
| [27] | 唐一夫, 曹长春, 吕鹏. 羟基氧化铁对镉-腐殖酸的吸附研究[J]. 无机盐工业, 2023, 55(8): 124-131. |
| [28] |
SCHWERTMANN U, FRIEDL J, KYEK A. Formation and properties of a continuous crystallinity series of synthetic ferrihydrites (2- to 6-line) and their relation to FeOOH forms[J]. Clays and Clay Minerals, 2004, 52(2): 221-226.
DOI URL |
| [29] | JOHN Y, DAVID V E, MMEREKI D. A comparative study on removal of hazardous anions from water by adsorption: a review[J]. International Journal of Chemical Engineering, 2018, 2018: 1-21. |
| [30] |
PIECZARA G, RZEPA G. The effect of Si content on ferrihydrite sorption capacity for Pb(II), Cu(II), Cr(VI), and P(V)[J]. Environmental Engineering and Management Journal, 2016, 15(9): 2095-2107.
DOI URL |
| [31] | 蒋晓锋, 隆汶君, 侯梦春, 等. 植物单宁还原水体六价铬的动力学研究[J]. 化学研究与应用, 2023, 35(11): 2740-2747. |
| [32] |
CHEN Z F, ZHAO Y S, LI Q. Characteristics and kinetics of hexavalent chromium reduction by gallic acid in aqueous solutions[J]. Water Science and Technology, 2015, 71(11): 1694-1700.
DOI PMID |
| [33] |
BHATTACHARYA S D, SHAH A K. Metal ion effect on dyeing of wool fabric with catechu[J]. Coloration Technology, 2000, 116(1): 10-12.
DOI URL |
| [34] |
SIMONIN J. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chemical Engineering Journal, 2016, 300: 254-263.
DOI URL |
| [35] |
JIANG X, LONG W, XU T, et al. Reductive transformation of Cr(VI) in contaminated soil by polyphenols: the role of gallic and tannic acid[J]. Ecotoxicology and Environmental Safety, 2023, 255: 114807.
DOI URL |
| [36] |
JIA Q, ZHANG X, LI Y, et al. Reductive dehalogenation in groundwater by Si-Fe(II) co-precipitates enhanced by internal electric field and low vacancy concentrations[J]. Water Research, 2023, 228: 119386.
DOI URL |
| [37] | 刘晓磊. 绿脱石-有机酸-六价铬复杂体系中铬的还原反应及机理研究[D]. 北京: 中国地质大学(北京), 2018. |
| [38] |
ARONNIEMI M, SAINIO J, LAHTINEN J. Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method[J]. Surface Science, 2005, 578(1/2/3): 108-123.
DOI URL |
| [39] |
BIESINGER M C, DAVIDSO R D, MCINTYRE N S. X-ray photoelectron spectroscopy studies of chromium compounds[J]. Surface and Interface Analysis, 2005, 36(12): 1550-1563.
DOI URL |
| [40] |
ARISAH F M, RAMLI N, ARIFFIN N, et al. Pseudomonas aeruginosa-mediated Cr(VI) bioremediation: mechanistic insights and future directions[J]. Bioremediation Journal, 2024, 28: 1-31.
DOI URL |
| [41] |
WANG Y, CHEN S, YANG X, et al. Enhanced removal of Cr(VI) in the Fe(III)/natural polyphenols system: role of the in situ generated Fe(II)[J]. Journal of Hazardous Materials, 2019, 377: 321-329.
DOI PMID |
| [42] | 曹昌丽, 吴冉冉, 陈立香, 等. 吩嗪在铜绿假单胞菌去除六价铬中的作用[J]. 环境工程学报, 2015(8): 3633-3636. |
| [43] | 王静, 邢海洋, 瞿玲娜. 没食子酸对铜绿假单胞菌生物膜的抑制作用研究[J]. 中国基层医药, 2021, 28(10): 1555-1559. |
| [44] | 龚莉, 史浙明, 张宗文, 等. 基于多元分析的某地区垃圾填埋场地下水生态环境风险定量评价[J]. 现代地质, 2024, 38(3): 734-743. |
| [45] |
GREATHOUSE, J A, JOHNSON L K, GREENWELL C H. Interaction of natural organic matter with layered minerals: recent developments in computational methods at the nanoscale (Review)[J]. Minerals, 2014, 4(2): 519-540.
DOI URL |
| [1] | 张博爱奇, 赵朝锐, 祝坤, 郭秋芝, 陈男, 冯传平, 胡瑜恬. 铁碳微电解耦合聚乙烯醇-海藻酸钠固定化强化地下水硫酸盐去除:功能群落调控与硫闭环回收[J]. 地学前缘, 2026, 33(1): 193-206. |
| [2] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
| [3] | 刘玉龙,刘菲,陈宏坤,邓皓,王勇. 影响铁渗透反应格栅修复地下水中氯代烃长期运行性能的研究进展[J]. 地学前缘, 2011, 18(3): 331-338. |
| [4] | 夏凡 刘玉龙 刘菲 陈鸿汉. 苯、甲苯对粒状铁去除四氯乙烯影响的柱实验研究[J]. 地学前缘, 2008, 15(6): 142-150. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
