地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 222-235.DOI: 10.13745/j.esf.sf.2025.10.9

• 污染水文地质 • 上一篇    下一篇

两相流条件下微纳塑料颗粒迁移及滞留机理研究

刘启明1,2(), 杨志兵1,2,*(), 吴婷1,2   

  1. 1.武汉大学 水资源工程与调度全国重点实验室, 湖北 武汉 430072
    2.武汉大学 水工岩石力学教育部重点实验室, 湖北 武汉 430072
  • 收稿日期:2025-07-11 修回日期:2025-08-23 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *杨志兵(1982—),男,教授,博士生导师,主要从事多相渗流、水文地质、地下水环境等方面的研究。E-mail: zbyang@whu.edu.cn
  • 作者简介:刘启明(2002—),男,硕士研究生,主要从事多孔介质多相渗流方面的研究。E-mail: liuqiming1@whu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2024YFE0197700);国家自然科学基金项目(42377066)

Transport and retention mechanisms of micro/nano plastics during two-phase flow

LIU Qiming1,2(), YANG Zhibing1,2,*(), WU Ting1,2   

  1. 1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
    2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China
  • Received:2025-07-11 Revised:2025-08-23 Online:2026-01-25 Published:2025-11-10

摘要: 微纳塑料(micro/nano-plastics,M/NPs)在多孔介质中的迁移与滞留机制是土壤与地下水污染领域的重要问题,然而受当前可视化技术的限制,两相流条件下M/NPs迁移与滞留过程的细观机理尚不明确。本研究基于三维可视化实验平台,直接观测并量化了渗吸条件下M/NPs在孔隙空间中的分布特征,重点分析了驱替结束后其在多孔介质骨架颗粒接触区、固相表面及液-液界面的滞留规律,探究了M/NPs粒径与驱替流量对其空间分布的控制机制。结果表明:M/NPs粒径通过改变M/NPs-固相表面与M/NPs-流体界面间的相互作用能来主导其滞留位点的选择;而M/NPs间的相互作用能大小是决定其能否聚集成团簇并滞留在孔隙空间的关键因素;驱替流量则通过改变固相-湿润相界面面积影响其滞留总量。此外,M/NPs滞留在多孔介质中不同点位的主导机制不同,其在多孔介质骨架颗粒接触区的滞留主要受筛分作用控制,而在固相表面与液-液界面处的滞留则主要依赖于界面吸附作用。在高剪切条件下滞留在固相表面的M/NPs可能会脱落,而骨架颗粒接触区作为低速区,其聚集团簇数量随流速增大而增加。本研究揭示并量化了M/NPs粒径与流速对其迁移滞留的作用机制,可为预测土壤和地下水等多相流体环境中污染物的迁移与归宿提供重要的理论依据。

关键词: 微纳塑料, 多孔介质, 两相流, 滞留机理, 分布特性

Abstract:

The transport and retention of micro/nano-plastics (M/NPs) in porous media is a critical concern in soil and groundwater contamination. However, limitations in visualization techniques have hindered a deeper understanding of the microscopic mechanisms governing M/NP transport under two-phase flow conditions. Using a three-dimensional visualization apparatus, we directly observed and quantified the distribution characteristics of M/NPs within pore spaces, with a specific focus on their retention at grain-grain contacts, solid surfaces, and fluid-fluid interfaces during imbibition. The effects of M/NP size and imbibition rate on their spatial distribution were further investigated. Our results reveal that M/NP size predominantly governs the selection of retention sites by altering the M/NP-solid and M/NP-fluid interface interaction energies. Conversely, the magnitude of interaction energy between M/NPs determines their potential to form aggregated clusters. The flow rate primarily influences the overall retention by altering the solid-wetting phase interfacial area. Moreover, distinct mechanisms govern retention at different locations: straining dominates at grain-grain contacts, while interfacial adsorption prevails at solid surfaces and fluid-fluid interfaces. Under high flow rates, M/NPs retained on solid surfaces can be readily detached due to enhanced shear forces. In contrast, the size of aggregated M/NP clusters at grain-grain contacts increases with flow velocity. This study elucidates the synergistic mechanisms by which M/NP size and flow velocity govern M/NP migration and retention, providing a theoretical basis for predicting the transport and fate of contaminants in multiphase subsurface environments.

Key words: micro/nano plastics, porous medium, two-phase flow, retention mechanism, distribution characteristics

中图分类号: