地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 153-165.DOI: 10.13745/j.esf.sf.2024.11.18
• 南海北部天然气水合物储层沉积特征与运聚体系 • 上一篇 下一篇
收稿日期:
2024-08-20
修回日期:
2024-12-13
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*卢海龙(1964—),男,博士,教授,博士生导师,主要从事天然气水合物的教学与研究工作。E-mail:hlu@pku.edu.cn
作者简介:
管 文(1992—),女,博士研究生,主要从事水合物热力学及动力学研究。E-mail:guan-guan@pku.edu.cn
基金资助:
GUAN Wen1,2(), YANG Hailin1,2, LU Hailong1,2,*(
)
Received:
2024-08-20
Revised:
2024-12-13
Online:
2025-03-25
Published:
2025-03-25
摘要:
天然气水合物主要蕴藏于海底沉积物与大陆冻土层中,深入研究多孔介质中水合物的相平衡及其影响因素,对于了解海底沉积物中水合物的形成机制、分布范围和储量评估具有重要意义。当前的相关实验研究大多聚焦于合成多孔介质,而天然沉积物因结构和成分复杂,对水合物相平衡特征影响的研究仍需进一步深化。本文综述了水合物在不同孔径多孔介质中的相平衡变化,全面分析了孔径、粒度以及表面润湿性对水合物相平衡的具体影响。研究揭示,多孔介质产生的强毛细管力会导致水的活性降低,进而抑制水合物的形成,且在纳米尺度范围内具有临界值。此外,较小的多孔介质粒度会增加成核位点和反应界面,从而缩短诱导时间,有利于水合物的成核和生长。至于表面润湿性(亲水和疏水)对水合物形成的影响,目前学界观点尚待统一,但多数研究倾向于认为疏水表面相对亲水表面能更好地促进水合物的形成。
中图分类号:
管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165.
GUAN Wen, YANG Hailin, LU Hailong. Research on factors affecting the phase equilibrium of natural gas hydrates in porous media[J]. Earth Science Frontiers, 2025, 32(2): 153-165.
图1 水合物晶体结构图(据文献[1]修改) a—Ⅰ型;b—Ⅱ型;c—H型;d—Ⅰ型水合物立方单元晶胞;e—Ⅱ型水合物立方单元晶胞;f—H型水合物笼六边形单元晶胞。
Fig.1 Crystal structure of clathrate hydrate: (a) Structure Ⅰ; (b) Structure Ⅱ; (c) Structure H; (d) Cubic unit cell of the clathrates I structure; (e) Cubic unit cell of the clathrates Ⅱ structure; (f) Hexagonal unit cell of the clathrate H structure. Modified from [1].
多孔介质 | 粒径/μm | 气体 | 参考 文献 |
---|---|---|---|
硅胶 | 0.007 | CH4, C3H8 | [ |
高硅氧玻璃 | 0.01,0.03,0.05 | CH4 | [ |
硅胶 | 0.002,0.003,0.005,0.007 | C3H8 | [ |
硅胶 | 0.003,0.005,0.007 | CH4, CO2 | [ |
硅胶 | 0.006,0.015,0.03 | CH4, CO2 | [ |
高硅氧玻璃 | 0.004,0.006,0.01,0.03, 0.05,0.1 | CH4, CO2, C3H8 | [ |
多孔硅玻璃 | 0.009 2,0.015 8,0.030 6 | CH4, CO2 | [ |
硅胶 | 0.002,0.003,0.005,0.007 5 | CH4 | [ |
硅胶 | 0.002,0.003,0.005,0.007 5 | CH4 | [ |
硅胶 | 0.003,0.005,0.007 5 | C2H6 | [ |
蒙脱石 | 0.009 | CH4 | [ |
表1 纳米尺度多孔介质
Table 1 Porous media of nanoscale
多孔介质 | 粒径/μm | 气体 | 参考 文献 |
---|---|---|---|
硅胶 | 0.007 | CH4, C3H8 | [ |
高硅氧玻璃 | 0.01,0.03,0.05 | CH4 | [ |
硅胶 | 0.002,0.003,0.005,0.007 | C3H8 | [ |
硅胶 | 0.003,0.005,0.007 | CH4, CO2 | [ |
硅胶 | 0.006,0.015,0.03 | CH4, CO2 | [ |
高硅氧玻璃 | 0.004,0.006,0.01,0.03, 0.05,0.1 | CH4, CO2, C3H8 | [ |
多孔硅玻璃 | 0.009 2,0.015 8,0.030 6 | CH4, CO2 | [ |
硅胶 | 0.002,0.003,0.005,0.007 5 | CH4 | [ |
硅胶 | 0.002,0.003,0.005,0.007 5 | CH4 | [ |
硅胶 | 0.003,0.005,0.007 5 | C2H6 | [ |
蒙脱石 | 0.009 | CH4 | [ |
图3 不同孔径范围的多孔介质中CO2水合物相平衡T-p条件(据文献[19⇓-21]修改)
Fig.3 T-p conditions of CO2 hydrate phase equilibrium in porous media with different pore size ranges. Modified from [19⇓-21].
图4 MIL-53水合物形成和解离过程中的p-T曲线(据文献[34]修改) a—MIL-53中的CO2水合物相平衡图;b—MIL-53中的CH4水合物相平衡图;c—CO2水合物p-T曲线;d—CH4水合物p-T曲线。
Fig.4 p-T curves during the formation and dissociation of hydrates in MIL-53: (a) Phase equilibrium diagram of CO2 hydrate in MIL-53; (b) Phase equilibrium diagram of CH4 hydrate in MIL-53; (c) p-T curve of CO2 hydrate; (d) p-T curve of CH4 hydrate. Modified from [34].
图5 水含量为20%(质量分数)的不同沉积物中甲烷水合物的相平衡条件(据文献[38]修改)
Fig.5 p-T conditions for phase equilibrium of methane hydrates in different sediments with 20% water content(mass fraction). Modified from [38].
图6 不同粒度的石英砂、硅胶中水合物相平衡(据文献[51-52]修改) a—CO2-CH4;b—CO2-H2。图中成分含量为质量分数。
Fig.6 (a) CO2-CH4 and (b) CO2-H2 hydrate phase equilibrium in quartz sand and silica gel with different particle sizes. Modified from [51-52].
图7 CH4水合物和CO2水合物形成的诱导时间(据文献[5,41,50]修改) a—活性炭中CH4水合物形成的诱导时间;b—硅砂中CH4水合物形成的诱导时间;c—浮石和火烧硬红土中CO2水合物形成的诱导时间。
Fig.7 Induction time of CH4 hydrate formation in activated carbon (a) and silica sand (b); CO2 hydrate formation in pumice and fire-hardened red clay (c). Modified from [5,41,50].
图8 亲水、疏水表面示意图(a)和固体颗粒对甲烷水合物成核的影响柱状图(b)(据文献[53]修改)
Fig.8 Schematic representation of hydrophilic and hydrophobic surfaces (a); Column diagram of the effect of solid particles on methane hydrate nucleation (b). Modified from [53].
图9 疏水性纳米二氧化硅的水合物促进机制(a)、亲水性纳米二氧化硅CH4分子与H2O分子的分布(b)和亲水性二氧化硅的表面基团(c)(据文献[55]修改)
Fig.9 Mechanism of hydrate promotion for hydrophobic nano-SiO2 (a); Distribution of CH4 molecules and H2O molecules on the surface of hydrophilic nano-SiO2 (b); Surface groups of hydrophilic SiO2 (c). Modified from [55].
图10 不同CO2浓度的混合气体水合物在多孔介质中的相平衡(据文献[51-52]修改) a—CH4-CO2;b—CO2-H2。图中成分含量为质量分数。
Fig.10 Phase equilibria of gas mixture hydrates with different CO2 concentrations: (a) CH4 with CO2 and (b) CO2 with H2 in porous media. Modified from [51-52].
图11 多孔介质中孔隙水盐度对水合物相平衡的影响(据文献[51]修改) 图中成分含量为质量分数。
Fig.11 The effect of pore water salinity on hydrate phase equilibrium in porous quartz sand. Modified from [51].
[1] | ENGLEZOS P. Phase equilibrium in canonical cubic structure I (sI) and II (sII) and hexagonal (sH) gas hydrate solid solutions[J]. Fluid Phase Equilibria, 2024, 578: 114005. |
[2] | QIN Y, SHANG L, ZHOU L. Application of nanofluids in rapid methane hydrate formation: a review[J]. Energy & Fuels, 2022, 36(16): 8995-9013. |
[3] | KLAUDA J B, SANDLER S I. Modeling gas hydrate phase equilibria in laboratory and natural porous media[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4197-4208. |
[4] | SLOAN E D Jr, CAROLYN A K. Clathrate hydrates of natural gases[M]. 3rd ed. New York: CRC Press, 2007. |
[5] | BHATTACHARJEE G, KUMAR A, SAKPAL T, et al. Carbon dioxide sequestration: influence of porous media on hydrate formation kinetics[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(6): 1205-1214. |
[6] | MOHAMMED S, ASGAR H, DEO M, et al. Interfacial and confinement-mediated organization of gas hydrates, water, organic fluids, and nanoparticles for the utilization of subsurface energy and geological resources[J]. Energy & Fuels, 2021, 35(6): 4687-4710. |
[7] | ZENG Z, KONG L, ZHAO Y P, et al. Mechanical properties of gas hydrate-bearing sediments influenced by multiple factors: a comprehensive review of triaxial tests[J]. Energy & Fuels, 2023, 37(21): 16190-16220. |
[8] | ZHANG W, WILDER J W, SMITH D H. Methane hydrate-ice equilibria in porous media[J]. The Journal of Physical Chemistry B, 2003, 107(47): 13084-13089. |
[9] | ZHANG W, SMITH D H. Constructing thermodynamic equations for ice-hydrate equilibria in porous media[A/OL]. [2024-08-20]. https://www.researchgate.net/publication/237443598_. |
[10] | SMITH D H, WILDER J W, SESHADRI K. Equilibrium pressures and temperatures for equilibria involving sI and sII hydrate, liquid water, and free gas in porous media[A/OL]. [2024-08-20]. https://www.researchgate.net/publication/242204671_. |
[11] | HENRY P, THOMAS M, BEN CLENNELL M. Formation of natural gas hydrates in marine sediments: 2. Thermodynamic calculations of stability conditions in porous sediments[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 23005-23022. |
[12] | WILDER J W, SESHADRI K, SMITH D H. Modeling hydrate formation in media with broad pore size distributions[J]. Langmuir, 2001, 17(21): 6729-6735. |
[13] | UCHIDA T, EBINUMA T. ISHIZAKI T. Dissociation condition measurements of methane hydrate in confined small pores of porous glass[J]. The Journal of Physical Chemistry B, 1999, 103(18): 3659-3662. |
[14] | SUN S C, LIU C L, YE Y G, et al. Phase behavior of methane hydrate in silica sand[J]. The Journal of Chemical Thermodynamics, 2014, 69: 118-124. |
[15] | SONG Y, WANG S, JIANG L. Hydrate phase equilibrium for CH4-CO2-H2O system in porous media[J]. The Canadian Journal of Chemical Engineering, 2016, 94(8): 1592-1598. |
[16] | SUN S, YE Y, LIU C. P-T stability conditions of methane hydrate in sediment from South China Sea[J]. Journal of Natural Gas Chemistry, 2011, 20(5): 531-536. |
[17] | MOHAMMADI A H, ESLAMIMANESH A, RICHON D, et al. Gas hydrate phase equilibrium in porous media: mathematical modeling and correlation[J]. Industrial & Engineering Chemistry Research, 2012, 51(2): 1062-1072. |
[18] | HANDA Y P, STUPIN D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-. ANG. -radius silica gel pores[J]. The Journal of Physical Chemistry, 1992, 96(21): 8599-8603. |
[19] | UCHIDA T, EBINUMA T, TAKEYA S. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media[J]. The Journal of Physical Chemistry B, 2002, 106(4): 820-826. |
[20] | SEO Y, LEE H, UCHIDA T. Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling[J]. Langmuir, 2002, 18(24): 9164-9170. |
[21] | ANDERSON R, LLAMEDO M, TOHIDI B. Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica[J]. The Journal of Physical Chemistry B, 2003, 107(15): 3507-3514. |
[22] | KANG S P, LEE J W, RYU H J. Phase behavior of methane and carbon dioxide hydrates in meso- and macro-sized porous media[J]. Fluid Phase Equilibria, 2008, 274(1/2): 68-72. |
[23] | WANG L B, CUI J L, SUN C Y, et al. Review on the applications and modifications of the Chen-Guo model for hydrate formation and dissociation[J]. Energy & Fuels, 2021, 35(4): 2936-2964. |
[24] | BARMAVATH T, MEKALA P, SANGWAI J S. Prediction of phase stability conditions of gas hydrates of methane and carbon dioxide in porous media[J]. Journal of Natural Gas Science and Engineering, 2014, 18: 254-262. |
[25] | SESHADRI K, WILDER J W, SMITH D H. Measurements of equilibrium pressures and temperatures for propane hydrate in silica gels with different pore-size distributions[J]. The Journal of Physical Chemistry B, 2001, 105(13): 2627-2631. |
[26] | SMITH D H, WILDER J W, SESHADRI K. Methane hydrate equilibria in silica gels with broad pore-size distributions[J]. AIChE Journal, 2002, 48(2): 393-400. |
[27] | ZHANG W, WILDER J W, SMITH D H. Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria[J]. AIChE Journal, 2002, 48(10): 2324-2331. |
[28] | PARK Y, LEE J, SHIN K, et al. Phase and kinetic behavior of the mixed methane and carbon dioxide hydrates[J]. Korean Journal of Chemical Engineering, 2005, 23(2): 283-287. |
[29] | SEO Y, LEE S, CHA I, et al. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels[J]. The Journal of Physical Chemistry B, 2009, 113(16): 5487-5492. |
[30] | LU H L, MATSUMOTO R. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column[J]. Geochemical Journal, 2002, 36(1): 21-30. |
[31] | LI L, LV Q N, LI X S, et al. Phase equilibrium and dissociation enthalpies of trimethylene sulfide + methane hydrates in brine water systems[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3717-3722. |
[32] | LIU C, YE Y G, SUN S C, et al. Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems[J]. Science China Earth Sciences, 2013, 56(4): 594-600. |
[33] | TURMER D J, CHERRY R S, SLOAN E D. Sensitivity of methane hydrate phase equilibria to sediment pore size[J]. Fluid Phase Equilibria, 2005, 228: 505-510. |
[34] | KIM D, AHN Y H, LEE H. Phase equilibria of CO2 and CH4 hydrates in intergranular meso/macro pores of MIL-53 metal organic framework[J]. Journal of Chemical & Engineering Data, 2015, 60(7): 2178-2185. |
[35] | UCHIDA T, TAKEYA S, CHUVILIN E M, et al. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): B05206. |
[36] | ZHANG Y, LI X S, WANG Y, et al. Decomposition conditions of methane hydrate in marine sediments from South China Sea[J]. Fluid Phase Equilibria, 2016, 413: 110-115. |
[37] | PARK T, LEE J Y, KWON T H. Effect of Pore Size Distribution on dissociation temperature depression and phase boundary shift of gas hydrate in various fine-grained sediments[J]. Energy & Fuels, 2018, 32(4): 5321-5330. |
[38] | LIU Z, CHEN T, WANG Z Y, et al. Hydrate phase equilibria in natural sediments: inhibition mechanism and NMR-based prediction method[J]. Chemical Engineering Journal, 2023, 452: 139447. |
[39] | WAITE W F, SANTAMARINA J C, CORTES D D. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): e2008rg000279. |
[40] | YANG M J, SONG Y C, LIU Y, et al. Influence of pore size, salinity and gas composition upon the hydrate formation conditions[J]. Chinese Journal of Chemical Engineering, 2010, 18(2): 292-296. |
[41] | SIANGSAI A, RANGSUNVIGIT P, KITIYANAN B, et al. Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation[J]. Chemical Engineering Science, 2015, 126: 383-389. |
[42] | BEST A I, PRIEST J A, CLAYTON C R I, et al. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions[J]. Earth and Planetary Science Letters, 2013, 368: 78-87. |
[43] | PRIEST J A, REES E V L, CLAYTON C R I. Influence of gas hydrate morphology on the seismic velocities of sands[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): B11205. |
[44] | CHOI J H, DAI S, CHA J H, et al. Laboratory formation of noncementing hydrates in sandy sediments[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1648-1656. |
[45] | KNEAFSEY T J, TOMUTSA L, MORIDIS G J. Methane hydrate formation and dissociation in a partially saturated sand-measurements and observations[J]. Journal of Petroleum Science and Engineering, 2007, 56: 108-126. |
[46] | LOH M, FALSER S, BABU P, et al. Dissociation of fresh- and seawater hydrates along the phase boundaries between 2.3 and 17 MPa[J]. Energy & Fuels, 2012, 26(10): 6240-6246. |
[47] | LOH M, TOO J L, FALSER S, et al. Gas production from methane hydrates in a dual wellbore system[J]. Energy & Fuels, 2015, 29(1): 35-42. |
[48] | MEKALA P, BABU P, SANGWAI J S, et al. Formation and dissociation kinetics of methane hydrates in seawater and silica sand[J]. Energy & Fuels, 2014, 28(4): 2708-2716. |
[49] | LU H, MOUDRAKOVSK I, RIEDEL M. Occurrence and structural characterization of gas hydrates associated with a cold vent field, offshore Vancouver Island[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B10): B10204. |
[50] | BAGHERZADEH S A, MOUDRAKOVSKI I L, RIPMEESTER J A. Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles[J]. Energy & Fuels, 2011, 25(7): 3083-3092. |
[51] | MU L, CUI Q Y. Experimental study on the dissociation equilibrium of (CH4+CO2) hydrates in the (quartz sands + NaCl solution) system[J]. Journal of Chemical & Engineering Data, 2019, 64(12): 6041-6048. |
[52] | KANG S P, LEE J, SEO Y. Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure[J]. Chemical Engineering Journal, 2013, 218: 126-132. |
[53] | GUO Y, XIAO W, PU W. CH4 nanobubbles on the hydrophobic solid-water interface serving as the nucleation sites of methane hydrate[J]. Langmuir, 2018, 34(34): 10181-10186. |
[54] | PAGE A J, SEAR R P. Heterogeneous nucleation in and out of pores[J]. Physical Review Letters, 2006, 97(6): 065701. |
[55] | WANG R, SUN H, XU X, et al. Study of the mechanism of hydrate formation promoted by hydrophobic nano-SiO2[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(19): 2257-2264. |
[56] | XU M, FANG X Y, NING F L, et al. Effect of hydrophilic silica nanoparticles on hydrate formation during methane gas migration in a simulated wellbore[J]. Petroleum, 2021, 7(4): 485-495. |
[57] | TAKEYA S, FUJIHISA H, GOTOH Y. Methane clathrate hydrates formed within hydrophilic and hydrophobic media: kinetics of dissociation and distortion of host structure[J]. The Journal of Physical Chemistry C, 2013, 117(14): 7081-7085. |
[58] | LEE S, SEO Y. Experimental measurement and thermodynamic modeling of the mixed CH4+C3H8 clathrate hydrate equilibria in silica gel pores: effects of pore size and salinity[J]. Langmuir, 2010, 26(12): 9742-9748. |
[59] | LI H, STANWIX P, AMAN Z. Raman spectroscopic studies of clathrate hydrate formation in the presence of hydrophobized particles[J]. The Journal of Physical Chemistry A, 2016, 120(3): 417-424. |
[60] | LI Y, CHEN M, SONG H. Methane hydrate formation in the stacking of kaolinite particles with different surface contacts as nanoreactors: a molecular dynamics simulation study[J]. Applied Clay Science, 2020, 186: 105439. |
[61] | HE Z J, LINGA P, JIANG J W. CH4 Hydrate formation between silica and graphite surfaces: insights from microsecond molecular dynamics simulations[J]. Langmuir, 2017, 33(43): 11956-11967. |
[62] | KASHCHIEV D, FIROOZABADI A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth, 2003, 250(3/4): 499-515. |
[63] | YANG M, SONG Y, LIU Y, et al. Thermodynamic characters of N2/CO2 hydrates in marine sediment[A/OL]. [2024-2-20]. https://www.semanticscholar.org/paper/. |
[64] | KANG S P, SEO Y, JANG W. Gas hydrate process for recovery of CO2 from fuel gas[J]. Chemical Engineering Transactions, 2009, 17: 1449-1454. |
[65] | ZHENG J N, YANG M. Phase Equilibrium data of CO2-MCP hydrates and CO2 gas uptake comparisons with CO2-CP hydrates and CO2-C3H8 Hydrates[J]. Journal of Chemical & Engineering Data, 2018, 64(1): 372-379. |
[66] | SUN S C, LIU C L, YE Y G. Phase equilibrium condition of marine carbon dioxide hydrate[J]. The Journal of Chemical Thermodynamics, 2013, 57: 256-260. |
[67] | 孙建. 细粒沉积物粒径及孔隙水盐度对甲烷水合物稳定温压条件的影响[D]. 北京: 中国地质大学(北京), 2016. |
[1] | 杨金秀, 王琛, 邢兰昌, 魏伟, 张伟, 韩维峰, 赵丽, 刘坤一. 海域天然气水合物相关的流体运移及海底甲烷渗漏研究[J]. 地学前缘, 2025, 32(2): 113-125. |
[2] | 姬梦飞, 王吉亮, 王伟巍, 张杰城, 刘雪芹, 吴时国. 神狐海域细粒沉积物水合物储层的地球物理特征研究[J]. 地学前缘, 2025, 32(2): 126-139. |
[3] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[4] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
[5] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[6] | 王秀娟, 韩磊, 刘俊州, 靳佳澎, 匡增桂, 周吉林. 天然气水合物与游离气共存的地球物理特征与识别[J]. 地学前缘, 2025, 32(2): 20-35. |
[7] | 吴能友, 李彦龙, 蒋宇静, 孙金声, 谢文卫, 胡高伟, 王韧, 于彦江, 王金堂, 陈强, 申凯翔, 孙志文, 陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望[J]. 地学前缘, 2025, 32(2): 216-229. |
[8] | 赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 2025, 32(2): 36-60. |
[9] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[10] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[11] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
[12] | 张园, 张敏, 刘仁静, 陈俊杰. 考虑微纳米限域效应对相平衡影响的CO2驱油机理研究[J]. 地学前缘, 2023, 30(2): 306-315. |
[13] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[14] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[15] | 刘咏, 张琪, 钱家忠, 吴盾, 张文永. 基于图像法的多孔介质双分子反应溶质运移模拟[J]. 地学前缘, 2022, 29(3): 248-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||