地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 126-139.DOI: 10.13745/j.esf.sf.2024.6.50
• 南海北部天然气水合物储层沉积特征与运聚体系 • 上一篇 下一篇
姬梦飞1,2(), 王吉亮1,*(
), 王伟巍3, 张杰城4, 刘雪芹5,6, 吴时国1
收稿日期:
2024-06-15
修回日期:
2024-11-08
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*王吉亮(1986—),男,副研究员,主要从事海洋地球物理探测、天然气水合物与海底流体活动系统以及海底浅部地质过程研究。E-mail:wangjl@idsse.ac.cn
作者简介:
姬梦飞(1999—),男,硕士研究生,主要从事多道地震数据处理和天然气水合物储层反演。E-mail:jimf@idsse.ac.cn
基金资助:
JI Mengfei1,2(), WANG Jiliang1,*(
), WANG Weiwei3, ZHANG Jiecheng4, LIU Xueqin5,6, WU Shiguo1
Received:
2024-06-15
Revised:
2024-11-08
Online:
2025-03-25
Published:
2025-03-25
摘要:
南海北部神狐海域水合物储层以粉砂质细粒沉积物为主,其饱和度达30%,远高于其他许多地区的细粒水合物储层饱和度。研究该区内细粒沉积物水合物储层特征对于认识水合物富集规律、资源评价和水合物试采开发方案设计均具有重要意义。本研究通过对神狐海域叠前地震数据进行精细处理获得地层速度模型以及角道集数据,进而开展叠前地震反演,获得包括纵横波阻抗、纵横波速度比和泊松比等多弹性参数剖面,结合测井数据对水合物和游离气分布进行精细地球物理描述。通过研究发现:(1)研究区内BSR反射振幅随入射角增大而减弱,BSR在小角度叠加剖面上更易识别;(2)BSR之下发育具有低速异常特征的烟囱构造,可能是深部游离气的向上运移通道;(3)研究区内水合物储层具有较强的横向非均质性,较高饱和度水合物下部一般赋存游离气,表明水合物再循环可能在细粒沉积中的水合物富集起到重要作用。
中图分类号:
姬梦飞, 王吉亮, 王伟巍, 张杰城, 刘雪芹, 吴时国. 神狐海域细粒沉积物水合物储层的地球物理特征研究[J]. 地学前缘, 2025, 32(2): 126-139.
JI Mengfei, WANG Jiliang, WANG Weiwei, ZHANG Jiecheng, LIU Xueqin, WU Shiguo. Geophysical characterization of gas hydrate reservoir in fine-grained sediment in Shenhu area[J]. Earth Science Frontiers, 2025, 32(2): 126-139.
图3 CMP3600偏移速度分析图示 100%速度的偏移剖面是根据最初的叠加速度经叠前时间偏移后获得,各不同百分比的偏移剖面是根据不同比例的叠加速度经叠前偏移获得,通过选取最佳的反射同相轴获得该反射界面的偏移速度并在右侧图中用红线表示,层速度用蓝线表示。
Fig.3 Migration velocity analysis for CMP 3600
图4 交互速度分析图 a—速度谱;b—未动校正的CMP道集;c—动校正之后CMP道集。
Fig.4 Interactive velocity analysis a—Velocity spectrum; b—The CMP gather without NMO; c—The CMP gather with NMO.
图6 研究区精细速度分析前后偏移地震剖面对比图 a—精细速度分析前偏移地震剖面;b—精细速度分析后偏移地震剖面。白色短线表示BSR;红色实线标注为断层;蓝色虚线代表气烟囱的大致范围。
Fig.6 Comparison of migrated seismic sections before and after fine velocity analysis in the study area (a) Migrated seismic section without high-resolution velocity model; (b) Migrated seismic section with high-resolution velocity model. The white short lines indicate the BSR, the solid red lines mark the faults, and the dashed blue lines represent the approximate extent of the gas chimney.
图7 分角度叠加剖面 a—0~10°叠加剖面;b—11°~20°叠加剖面;c—21°~30°叠加剖面。
Fig.7 The different angle stack sections (a) 0~10° stack section; (b) 11°~20° stack section;(c) 21°~30° stack section.
图8 SH-02井震标定 a—井旁实际地震道;b—合成地震道集;c—实际地震记录与合成地震记录的互相关谱;d—提取的地震子波。
Fig.8 Well-seismic tie at Site SH-02 (a) The observed seismogram near the well; (b) The synthetic seismogram; (c) The cross-correlation between the real and synthetic seismogram; (d) Extracted seismic wavelet.
图9 反演目标层段及反演结果剖面 a—反演目标层段和井位;b—反演得到的纵波阻抗剖面及井曲线;c—反演得到的横波阻抗剖面及井曲线;d—反演得到的泊松比剖面。
Fig.9 The inversion region and result profiles (a) The target region and well location; (b) P-wave impedance section and well curve; (c) S-wave impedance section and well curve; (d) Poisson ratio section.
图10 水合物储层局部放大地震剖面及多弹性参数剖面图 a—局部放大的地震剖面;b—纵波阻抗;c—泊松比;d—横波阻抗;e—拉梅常数λ与密度乘积;f—拉梅常数μ与密度乘积。白色箭头指示水合物,黑色箭头指示游离气。
Fig.10 Local enlarged seismic profile and multi-elastic parameter profiles of hydrate reservoir: (a) The locally enlarged seismic profile; (b) P-wave impedance; (c) Poisson ratio; (d) S-wave impedance;(e) Lambda*Rho; (f) Mu*Rho. White arrows indicate hydrates, and black arrows indicate free gas.
图12 水合物与游离气分布特征刻画 a—水合物储层纵波阻抗属性及其局部放大图;b—游离气层纵波阻抗属性及其局部放大图。
Fig.12 Characterization of hydrate and free gas distribution:(a) P-wave impedance of hydrate reservoir and its local magnifications;(b) P-wave impedance of free gas reservoir and its local magnifications.
[1] | ENGLEZOS P. Clathrate hydrates[J]. Industrial & Engineering Chemistry Research, 1993, 32(7): 1251-1274. |
[2] | KVENVOLDEN K A. A primer on the geological occurrence of gas hydrate[J]. Geological Society, London, Special Publications, 1998, 137(1): 9-30. |
[3] | COLLETT T S. Energy resource potential of natural gas hydrates[J]. AAPG Bulletin, 2002, 86(11): 1971-1992. |
[4] | SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. |
[5] | COLLETT T S, DALLIMORE S R. Permafrost-associated gas hydrate[M]//MAX M D. Coastal systems and continental margins. Dordrecht: Springer Netherlands, 2003: 43-60. |
[6] |
KVENVOLDEN K A. Potential effects of gas hydrate on human welfare[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3420-3426.
DOI PMID |
[7] | 吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1): 2-8. |
[8] | WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4): e2008rg000279. |
[9] | COLLETT T S. Gas hydrate petroleum systems in marine and Arctic permafrost environments[J]. Gcssepm Proceedings, 2009, 29: 6-30. |
[10] | KVENVOLDEN K, BARNARD L. Gas hydrates of the Black Outer Ridge, DSDP site 553, leg76[J]. Initial Reports of Deep Sea Drilling Project, 1983, 76: 353-366. |
[11] | HYNDMAN R D, SPENCE G D. A seismic study of methane hydrate marine bottom simulating reflectors[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B5): 6683-6698. |
[12] | TONG S Y, WANG J L, LI L W, et al. Study of the sensitive properties of marine gas hydrate based on the prestack elastic inversion[J]. Journal of Ocean University of China, 2019, 18(5): 1086-1092. |
[13] | PETERSEN C J, PAPENBERG C, KLAESCHEN D. Local seismic quantification of gas hydrates and BSR characterization from multi-frequency OBS data at northern Hydrate Ridge[J]. Earth and Planetary Science Letters, 2007, 255(3/4): 414-431. |
[14] | SHANKAR U, SAIN K, RIEDEL M. Assessment of gas hydrate stability zone and geothermal modeling of BSR in the Andaman Sea[J]. Journal of Asian Earth Sciences, 2014, 79: 358-365. |
[15] | YI B Y, LEE G H, KANG N K, et al. Deterministic estimation of gas-hydrate resource volume in a small area of the Ulleung Basin, East Sea (Japan Sea) from rock physics modeling and pre-stack inversion[J]. Marine and Petroleum Geology, 2018, 92: 597-608. |
[16] | JAISWAL P. Hydrate quantification: Integrating full-waveform inversion, seismic attributes, and rock physics[J]. Interpretation, 2016, 4(1): SA55-SA71. |
[17] | WANG J L, JAISWAL P, HAINES S S, et al. Gas hydrate quantification in Walker Ridge block 313, Gulf of Mexico, from full-waveform inversion of ocean-bottom seismic data[J]. Interpretation, 2020, 8(1): T27-T42. |
[18] | LI C F, HU G W, ZHANG W, et al. Influence of foraminifera on formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from Shenhu area, South China Sea[J]. Science China Earth Sciences, 2016, 59: 2223-2230. |
[19] | ZHANG W, LIANG J Q, LU J A, et al. Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum Exploration and Development, 2017, 44(5): 708-719. |
[20] | ZHANG W, LIANG J Q, WEI J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104191. |
[21] | SU M, YANG R, WANG H, et al. Gas hydrates distribution in the shenhu area, northern South China Sea: comparisons between the eight drilling sites with gas-hydrate petroleum system[J]. Geologica Acta, 2016, 14: 79-100. |
[22] | WANG J L, WU S G, KONG X, et al. Geophysical characterization of a fine-grained gas hydrate reservoir in the shenhu area, northern South China Sea: integration of seismic data and downhole logs[J]. Marine and Petroleum Geology, 2018, 92: 895-903. |
[23] | LIU J W, LI X S. Recent advances on natural gas hydrate exploration and development in the South China Sea[J]. Energy & Fuels, 2021, 35(9): 7528-7552. |
[24] | WANG X J, HUTCHINSON D R, WU S, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B5): 1-18. |
[25] | COOK A E, ANDERSON B I, RASMUS J, et al. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 72-84. |
[26] | COLLETT T S, LEE M W, ZYRIANOVA M V, et al. Gulf of Mexico gas hydrate joint industry project leg II logging-while-drilling data acquisition and analysis[J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. |
[27] | ITO T, KOMATSU Y, FUJII T, et al. Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 368-378. |
[28] | KIMURA S, ITO T, NODA S, et al. Water permeability evolution with faulting for unconsolidated turbidite sand in a gas-hydrate reservoir in the eastern Nankai Trough area of Japan[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 13415-13426. |
[29] | GUÉRIN G, GOLDBERG D, MELTSER A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17781-17795. |
[30] | YUN T S, LEE C, LEE J S, et al. A pressure core based characterization of hydrate-bearing sediments in the Ulleung Basin, Sea of Japan (East Sea)[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B2): 1-12. |
[31] | SHANKAR U. Gas hydrate saturation from seismic data constrained by log data in the Krishna-Godavari Basin[J]. Journal of Petroleum Exploration and Production Technology, 2016, 6(1): 13-23. |
[32] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[33] | WANG D, NING F, LU J, et al. Reservoir characteristics and critical influencing factors on gas hydrate accumulations in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2021, 133: 105238. |
[34] | SU M, LUO K W, FANG Y X, et al. Grain-size characteristics of fine-grained sediments and association with gas hydrate saturation in Shenhu Area, northern South China Sea[J]. Ore Geology Reviews, 2021, 129: 103889. |
[35] | YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. |
[36] | LAI H F, DENG Y N, YANG L, et al. Origin of natural gas within the deep-sea uncompacted sediments of the Shenhu area, northern South China Sea: geochemical and methanogenic cultivation results[J]. Marine and Petroleum Geology, 2023, 147: 106015. |
[37] | TAYLOR B, HAYES D E. Origin and history of the South China Sea Basin[M]//Geophysical Monograph Series. Washington DC: American Geophysical Union, 1983: 23-56. |
[38] | 米立军, 张向涛, 庞雄, 等. 珠江口盆地形成机制与油气地质[J]. 石油学报, 2019, 40(增刊1): 1-10. |
[39] | 梁劲, 王明君, 陆敬安, 等. 南海北部神狐海域含天然气水合物沉积层的速度特征[J]. 天然气工业, 2013, 33(7): 29-35. |
[40] | WANG J H, PANG X, WANG C W, et al. Discovery and recognition of the central diapiric zone in Baiyun depression, Pearl River Mouth Basin[J]. Earth Science, 2006, 31(2): 209-213. |
[41] |
ZHU W. Petroleum geology in deepwater area of northern continental margin in South China Sea[J]. Acta Petrolei Sinica, 2010, 31(4): 521.
DOI |
[42] | ZHU W L, HUANG B J, MI L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan Basins, South China Sea[J]. AAPG Bulletin, 2009, 93(6): 741-761. |
[43] | 靳佳澎. 南海北部珠江口盆地天然气水合物分布特征及其控制因素研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2020. |
[44] | 龚跃华, 杨胜雄, 王宏斌, 等. 南海北部神狐海域天然气水合物成藏特征[J]. 现代地质, 2009, 23(2): 210-216. |
[45] | 沙志彬, 郭依群, 杨木壮, 等. 南海北部陆坡区沉积与天然气水合物成藏关系[J]. 海洋地质与第四纪地质, 2009, 29(5): 89-98. |
[46] | TÓTH Z, SPIESS V, MOGOLLÓN J M, et al. Estimating the free gas content in Baltic Sea sediments using compressional wave velocity from marine seismic data[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 8577-8593. |
[47] | 邹振, 刘洪, 刘红伟. Kirchhoff叠前时间偏移角度道集[J]. 地球物理学报, 2010, 53(5): 1207-1208, 1213-1214. |
[48] | ZOEPPRITZ K. On the reflection and propagation of seismic waves[J]. Gottinger Nachrichten, 1919, 1(5): 66-84. |
[49] | SHERIFF R E, GELDART L P. Exploration seismology[M]. Cambridge: Cambridge University Press, 1995. |
[50] | KEIITI A, RICHARDS P G. Quantitative seismology: theory and methods[J]. Geological Magazine, 1980, 118(2): 208-219. |
[51] | 韩家兴. 叠前同时反演及其在春光油田储层预测中的应用[D]. 成都: 成都理工大学, 2017. |
[52] | 张广智, 陈怀震, 印兴耀, 等. 基于各向异性AVO的裂缝弹性参数叠前反演方法[J]. 吉林大学学报(地球科学版), 2012, 42(3): 845-851, 871. |
[53] | 王维红, 林春华, 王建民, 等. 叠前弹性参数反演方法及其应用[J]. 石油物探, 2009, 48(5): 17, 483-487, 492. |
[54] | GOODWAY B, CHEN T, DOWNTON J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters;“λρ”, “μρ”, & “λ/μ fluid stack”, from P and S inversions[M]//SEG technical program expanded abstracts 1997. Society of Exploration Geophysicists, 1997: 183-186. |
[55] | QIAN J, WANG X J, WU S G, et al. AVO analysis of BSR to assess free gas within fine-grained sediments in the Shenhu area, South China Sea[J]. Marine Geophysical Research, 2014, 35: 125-140. |
[56] | ROSS C P, KINMAN D L. Nonbright-spot AVO: two examples[J]. Geophysics, 1995, 60: 1398-1408. |
[57] | TINIVELLA U, ACCAINO F. Compressional velocity structure and Poisson’s ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica)[J]. Marine Geology, 2000, 164(1/2): 13-27. |
[58] | GRIFFIN A G, BLAND K J, FIELD B, et al. Reservoir characterisation of the east coast and Pegasus Basins, eastern north island, new zealand[C]//International Conference and Exhibition, Melbourne, Australia 13-16 September 2015. Melbourne, Australia. Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2015: 150. |
[59] | CHEN M A, DOSSO S, SPENCE G, et al. AVO inversion in marine gas hydrate studies[C]//What’s next? CSPG-CWLS Convention. 2006: 393-397. |
[60] | 刘学伟, 李敏锋, 张聿文, 等. 天然气水合物地震响应研究: 中国南海HD152测线应用实例[J]. 现代地质, 2005, 19(1): 33-38. |
[61] | 宋海斌, 张岭, 江为为, 等. 海洋天然气水合物的地球物理研究(Ⅲ): 似海底反射[J]. 地球物理学进展, 2003, 18(2): 182-187. |
[62] | 殷文. 叠前地震反演关键技术及影响因素分析与研究[J]. 地球物理学进展, 2013, 28(6): 2958-2968. |
[63] | SU M, SHA Z, ZHANG C, et al. Types, characteristics and significances of migrating pathways of gas-bearing fluids in the Shenhu area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica-English Edition, 2017, 91(1): 219-231. |
[64] | YANG J, WANG X, JIN J, et al. The role of fluid migration in the occurrence of shallow gas and gas hydrates in the south of the Pearl River Mouth Basin, South China Sea[J]. Interpretation, 2017, 5(3): SM1-SM11. |
[65] | 葛家旺, 赵晓明, 樊奇, 等. 世界热点地区高饱和度天然气水合物有利沉积储集条件[J]. 海洋地质前沿, 2023, 39(4): 1-13. |
[66] | 王秀娟, 吴时国, 刘学伟, 等. 基于测井和地震资料的神狐海域天然气水合物资源量估算[J]. 地球物理学进展, 2010, 25(4): 1288-1297. |
[67] | NOLE M, DAIGLE H, COOK A E, et al. Burial-driven methane recycling in marine gas hydrate systems[J]. Earth and Planetary Science Letters, 2018, 499: 197-204. |
[68] | PAULL C K, USSLER III W, BOROWSKI W S. Sources of biogenic methane to form marine gas hydrates: in situ production or upward migration?[R]. Chapel Hill, NC (United States): North Carolina University, 1993. |
[69] | HAACKE R R, WESTBROOK G K, HYNDMAN R D. Gas hydrate, fluid flow and free gas: formation of the bottom-simulating reflector[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 407-420. |
[70] | MATSUMOTO R, TOMARU H, LU H. Detection and evaluation of gas hydrates in the eastern Nankai Trough by geochemical and geophysical methods[J]. Resource Geology, 2004, 54(1): 53-67. |
[71] | YOU K, FLEMINGS P B, MALINVERNO A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. |
[72] | KROEGER K F, CRUTCHLEY G J, HILLMAN J I T, et al. Gas hydrate formation beneath thrust ridges: a test of concepts using 3D modelling at the southern Hikurangi Margin, New Zealand[J]. Marine and Petroleum Geology, 2022, 135: 105394. |
[1] | 杨金秀, 王琛, 邢兰昌, 魏伟, 张伟, 韩维峰, 赵丽, 刘坤一. 海域天然气水合物相关的流体运移及海底甲烷渗漏研究[J]. 地学前缘, 2025, 32(2): 113-125. |
[2] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[3] | 管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165. |
[4] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
[5] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[6] | 王秀娟, 韩磊, 刘俊州, 靳佳澎, 匡增桂, 周吉林. 天然气水合物与游离气共存的地球物理特征与识别[J]. 地学前缘, 2025, 32(2): 20-35. |
[7] | 吴能友, 李彦龙, 蒋宇静, 孙金声, 谢文卫, 胡高伟, 王韧, 于彦江, 王金堂, 陈强, 申凯翔, 孙志文, 陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望[J]. 地学前缘, 2025, 32(2): 216-229. |
[8] | 赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 2025, 32(2): 36-60. |
[9] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[10] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[11] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[12] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[13] | 刘圣乾,刘晖,姜在兴,夏中源,庞守吉,马文贤. 青海南部冻土区天然气水合物成藏控制因素[J]. 地学前缘, 2017, 24(6): 242-253. |
[14] | 孙春岩,赵浩,贺会策,张志冰,竺玮煌,孙逊,尹文斌,凌帆. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘, 2017, 24(6): 225-241. |
[15] | 何涛,卢海龙,林进清,董一飞,何健. 海域天然气水合物开发的地球物理监测[J]. 地学前缘, 2017, 24(5): 368-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||