地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 61-76.DOI: 10.13745/j.esf.sf.2024.11.19
• 南海北部天然气水合物钻探发现与富集成藏 • 上一篇 下一篇
靳佳澎1(), 王秀娟1,2,*(
), 邓炜3, 李清平4, 李丽霞4, 余晗3, 周吉林2, 吴能友1
收稿日期:
2023-11-14
修回日期:
2024-11-15
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*王秀娟(1976—),女,教授,主要从事天然气水合物成藏系统和地球物理探测技术研究。E-mail:wangxiujuan@ouc.edu.cn
作者简介:
靳佳澎(1992—),男,副研究员,主要从事天然气水合物地球物理识别和成藏机理研究。E-mail:jpjin@qnlm.ac
基金资助:
JIN Jiapeng1(), WANG Xiujuan1,2,*(
), DENG Wei3, LI Qingping4, LI Lixia4, YU Han3, ZHOU Jilin2, WU Nengyou1
Received:
2023-11-14
Revised:
2024-11-15
Online:
2025-03-25
Published:
2025-03-25
摘要:
近年来,我国在南海北部完成了9个天然气水合物钻探航次,采集了大量三维地震资料,发现了多种赋存类型的天然气水合物,但是不同赋存形态与富集程度的天然气水合物地球物理异常响应及主控因素差异有待厘清。在台西南盆地和琼东南盆地发现了呈烟囱状反射的裂隙充填型水合物与呈强振幅反射的孔隙充填型水合物垂向叠置分布,而珠江口盆地水合物稳定带底界上部广泛发育孔隙充填型水合物。研究认为低孔渗特征、相对细粒沉积层和块体搬运沉积体储层,匹配局部高通量流体供给条件,控制了裂隙充填型水合物赋存;相对低通量流体和相对粗粒储层岩性是孔隙充填型水合物赋存的主要条件,而Ⅱ型水合物、水合物与游离气共存及近期活动水合物系统均与深部来源热成因气及相对高通量流体供给有关。构造-沉积背景差异是多类型水合物赋存的主要原因,流体运移通道、运移方式和储层岩性耦合控制天然气水合物富集程度;受晚期岩浆侵入、泥火山构造、隆起构造影响而形成的断层和气烟囱构造控制流体运移与天然气水合物成藏。因而查明不同盆地发育的天然气水合物赋存差异,厘清多类型水合物地质主控因素对于指导高富集天然气水合物藏勘探具有重要意义。
中图分类号:
靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76.
JIN Jiapeng, WANG Xiujuan, DENG Wei, LI Qingping, LI Lixia, YU Han, ZHOU Jilin, WU Nengyou. Accumulation characteristics and occurrence differences of multitype gas hydrates in the northern South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 61-76.
图1 南海北部不同盆地BSR分布及典型盆地水合物钻探区放大图 a—南海北部沉积盆地及BSR分布图;b—珠江口盆地白云凹陷海底迁移峡谷区的多类型BSR分布;c—琼东南盆地块体搬运沉积发育区BSR分布;d—台西南盆地挤压构造区BSR分布;e—珠江口盆地揭阳凹陷海底侵蚀峡谷区BSR分布。
Fig.1 BSR distribution in different basins in the northern South China Sea and enlarged map of typical gas hydrate drilling areas a—Map of sedimentary basins and BSR distribution in the northern South China Sea; b—Distribution of multiple types of BSR in the submarine canyon zone of the Baiyun Sag, Pearl River Mouth Basin; c—BSR distribution in the mass-transported sediment zone of the Qiongdongnan Basin; d—BSR distribution in the thrust-extrusion tectonic zone of the Taixinan Basin; e—BSR distribution in the erosional submarine canyon zone of the Jieyang Sag, eastern Pearl River Mouth Basin.
图2 南海北部珠江口盆地、琼东南盆地和台西南盆地地层年代、岩性及沉积环境对比图(据文献[12,23-24]修改)
Fig.2 Comparison of stratigraphic ages, lithologies, and depositional environments in the Pearl River Mouth Basin, Qiongdongnan Basin, and Taixinan Basin, northern South China Sea (modified after [12,23-24]).
图3 过南海北部典型水合物赋存区地震剖面组合图,显示与多类型水合物发育有关的多种BSR反射特征 a,b,c—台西南盆地过GMGS2-W08站位、F冷泉和澎湖峡谷地震剖面显示连续、不连续BSR,具有上部强振幅反射、上拱反射及海底和埋藏的碳酸盐岩强反射;d,e,f—珠江口盆地揭阳凹陷剖面显示幼年期峡谷、青年期峡谷和成熟峡谷侧翼发育连续、不连续和古BSR及BSR随侵蚀作用向下调整现象;g,h,i—珠江口盆地白云凹陷过W18&W19站位、W11&W17站位和W07站位地震剖面显示高通量流体垂向运移、受热成因气影响发育II-BSR及动态调整的BSR2现象;j,k,l,m,h—琼东南盆地过W09、W08&W07站位,W01、W03&W04站位,埋藏水道及海马冷泉站位的地震剖面,显示MTD沉积区冷泉站位附近地震反射特征、穿层BSR和局部浊流夹层分布;n—中建盆地典型地震剖面显示穿层BSR及其之上的强反射。地震剖面位置见图1。
Fig.3 Seismic profiles across typical gas hydrate occurrence areas in the northern slope of the South China Sea, showing various BSR reflection characteristics associated with multitype gas hydrate development. a, b, c—Seismic profiles across site GMGS2W08, cold seep site F, and Penghu Canyon in the Taixinan Basin show continuous and discontinuous BSR, high-amplitude reflections above the BSR, pull-up reflections, and strong carbonate reflections on the seafloor or buried in sediments. d, e, f—Seismic profiles of the Jieyang Sag in the Pearl River Mouth Basin show continuous, discontinuous, and paleo-BSR on the flanks of juvenile, young, and mature canyons, as well as the downward adjustment of BSR caused by canyon erosion. g, h, i—Seismic profiles of the Baiyun Sag in the Pearl River Mouth Basin across sites 18 &19, 11 &17, and 07 show vertical migration of high-flux fluids, thermogenic gas-related IIBSR, and dynamically adjusted BSR2. j, k, l, m, h—Seismic profiles in the Qiongdongnan Basin across sites W09, W08&W07, W01, W03&W04, and the Haima cold seep site show seismic reflection characteristics near the cold seep in the MTD area, BSR crosscutting with strata, and local sand-rich turbidite layers. n—Typical seismic profiles in the Zhongjian Basin show BSR crosscutting with strata and strong reflections above it. The locations of seismic profiles are shown in Fig.1.
图4 过南海北部典型盆地地震剖面显示水合物成藏与不同区域构造-沉积特征有关 a—台西南盆地剖面显示活动构造背景下泥火山、断层和它们与浅部BSR和冷泉系统关系;b—珠江口盆地揭阳凹陷剖面显示基底隆起构造上BSR受海底侵蚀作用发生下移调整;c—珠江口盆地白云凹陷剖面显示岩浆火山和侵入体及伴生的断层、气烟囱构造与浅部BSR关系;d—琼东南盆地剖面显示基底隆起及断层、气烟囱构造与浅部冷泉相关水合物赋存关系。地震剖面位置见图1。
Fig.4 Seismic profiles across typical basins in the northern slope of the South China Sea showing the regional tectonic features controlling gas hydrate occurrence a—Seismic profile of the Taixinan Basin showing mud volcanoes, faults, and their relationship with the shallow BSR and cold seep system under an active tectonic setting; b—Seismic profile of the Jieyang Sag in the Pearl River Mouth Basin showing the downward shift of the BSR caused by seafloor erosion above the basement uplift; c—Seismic profile of the Baiyun Sag in the Pearl River Mouth Basin showing magmatic volcanoes, intrusive sills, and associated faults and gas chimneys related to the shallow BSR; d—3D seismic profile of the Qiongdongnan Basin showing the relationship between basement uplift, faults, gas chimneys, and the occurrence of shallow cold seep-related gas hydrates. The locations of seismic profiles are shown in Fig.1.
构造 背景 | 盆地 | 构造 单元 | 水合物 赋存类型 | BSR特征 | 饱和度 | 储层条件 | 气源 条件 | 流体疏导条件 | 特殊地质要素 | 典型站位 |
---|---|---|---|---|---|---|---|---|---|---|
被动 大陆 边缘 | 珠江口 盆地 | 白云 凹陷 | 孔隙充填型、部分站位发现Ⅱ型水合物 | 连续、不连续、 羽状、II-BSR、 BSR2 | 中-高 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 混合 成因气 | 正断层、 气烟囱、 渗透性 地层 | 侵入岩席、单 向迁移峡谷 | GMGS3-W07、 W18&W19、 W11&W17 GMGS4-SC01、 SC02、SC03 |
云荔 低凸起 | 连续、不连续、 羽状BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 火山复合体 | ||||||
揭阳 凹陷 | 连续、不连续、 古BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 海底侵蚀峡谷、 基底隆起 | ||||||
琼东南 盆地 | 松南 低凸起 | 裂隙充填型与孔隙充填型叠置、部分站位发现Ⅱ型水合物 | BSR与MTD底 重合、上拱、仅 局部发育穿层 的BSR | 中-高 | 细粒泥质粉砂 或粉砂质泥 | 热成因 气为主 | 正断层、 气烟囱 | 基底隆起 | GMGS5-W07、 W08、W09 | |
陵南 低凸起 | 中-高 | 细粒泥质粉 砂—粗粒砂 | GMGS6-W01、 W03、W04 | |||||||
主动 大陆 边缘 | 台西 南盆地 | 裂隙充填型与孔隙充填型叠置 | 连续、不连续、 BSR上拱、冷泉 下部缺失 | 中 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 生物成 因气、 局部热 成因气 | 逆冲断层、 正断层、 气烟囱 | 底辟构造 | GMGS2-W08、 W09、W16、 F站位 |
表1 南海北部不同盆地中多类型水合物赋存特征与成藏要素统计
Table 1 Geological controls and occurrence characteristics of multitype gas hydrates in different basins in the northern slope of the South China Sea
构造 背景 | 盆地 | 构造 单元 | 水合物 赋存类型 | BSR特征 | 饱和度 | 储层条件 | 气源 条件 | 流体疏导条件 | 特殊地质要素 | 典型站位 |
---|---|---|---|---|---|---|---|---|---|---|
被动 大陆 边缘 | 珠江口 盆地 | 白云 凹陷 | 孔隙充填型、部分站位发现Ⅱ型水合物 | 连续、不连续、 羽状、II-BSR、 BSR2 | 中-高 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 混合 成因气 | 正断层、 气烟囱、 渗透性 地层 | 侵入岩席、单 向迁移峡谷 | GMGS3-W07、 W18&W19、 W11&W17 GMGS4-SC01、 SC02、SC03 |
云荔 低凸起 | 连续、不连续、 羽状BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 火山复合体 | ||||||
揭阳 凹陷 | 连续、不连续、 古BSR | 中? | 细粒泥质粉砂 或粉砂质泥 | 海底侵蚀峡谷、 基底隆起 | ||||||
琼东南 盆地 | 松南 低凸起 | 裂隙充填型与孔隙充填型叠置、部分站位发现Ⅱ型水合物 | BSR与MTD底 重合、上拱、仅 局部发育穿层 的BSR | 中-高 | 细粒泥质粉砂 或粉砂质泥 | 热成因 气为主 | 正断层、 气烟囱 | 基底隆起 | GMGS5-W07、 W08、W09 | |
陵南 低凸起 | 中-高 | 细粒泥质粉 砂—粗粒砂 | GMGS6-W01、 W03、W04 | |||||||
主动 大陆 边缘 | 台西 南盆地 | 裂隙充填型与孔隙充填型叠置 | 连续、不连续、 BSR上拱、冷泉 下部缺失 | 中 | 细粒泥质粉砂 或粉砂质泥、局 部富有孔虫砂 | 生物成 因气、 局部热 成因气 | 逆冲断层、 正断层、 气烟囱 | 底辟构造 | GMGS2-W08、 W09、W16、 F站位 |
图5 南海北部水合物及油气站位δ13C1与C1/(C2+C3)交会分析气源组分
Fig.5 Plot of δ13C1 versus the C1/(C2+C3) ratio of gases from gas hydrate-bearing and oil field sites in the northern slope of the South China Sea
图6 南海北部不同构造-沉积背景下多类型天然气水合物赋存及成藏主控因素差异
Fig.6 Differences in the geological controls of multitype gas hydrate occurrences under different tectonic-sedimentary settings in the northern South China Sea
[1] | RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168. |
[2] | RENSSEN H, BEETS C J, FICHEFET T, et al. Modeling the climate response to a massive methane release from gas hydrates[J]. Paleoceanography, 2004, 19(2): PA2010. |
[3] | DAVIES R J, MORALES MAQUEDA M Á, LI A, et al. Millennial-scale shifts in the methane hydrate stability zone due to Quaternary climate change[J]. Geology, 2017, 45(11): 1027-1030. |
[4] | ZHANG G X, LIANG J Q, LU J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. |
[5] | ZHONG G F, LIANG J Q, GUO Y Q, et al. Integrated core log facies analysis and depositional model of the gas hydrate-bearing sediments in the northeastern continental slope, South China Sea[J]. Marine and Petroleum Geology, 2017, 86: 1159-1172. |
[6] | 李杰, 何敏, 颜承志, 等. 南海北部揭阳凹陷天然气水合物的地震异常特征分析[J]. 海洋与湖沼, 2020, 51(2): 274-282. |
[7] | JIN J P, WANG X J, HE M, et al. Downward shift of gas hydrate stability zone due to seafloor erosion in the eastern Dongsha Island, South China Sea[J]. Journal of Oceanology and Limnology, 2020, 38(4): 1188-1200. |
[8] | ZHANG H Q, YANG S X, WU N Y, et al. Successful and surprising results for China’s first gas hydrate drilling expedition[J]. Fire in the Ice, 2007, 7(3): 6-9. |
[9] | YANG S X, ZHANG M, LIANG J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(2): 1-5. |
[10] | YANG S X, LIANG J Q, LEI Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea[J]. Fire in the Ice, 2017, 17(1): 7-11. |
[11] |
YE J L, WEI J G, LIANG J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104: 29-39.
DOI |
[12] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[13] | LU Y T, LUAN X W, LYU F L, et al. Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 84: 274-288. |
[14] | COLLETT T S, JOHNSON A, KNAPP C, et al. Natural gas hydrates: a review[M]//COLLETT T S. Natural gas hydrates:energy resource potential and associated geologic hazards. Tulsa: American Association of Petroleum Geologists, 2009: 146-219. |
[15] | SLOAN E D, KOH C A. Clathrate hydrates of natural gases, 3rd ed[M]. Boca Raton: CRC Press, 2007. |
[16] | KLAPP S A, MURSHED M M, PAPE T, et al. Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 207-217. |
[17] | PAGANONI M, CARTWRIGHT J A, FOSCHI M, et al. Relationship between fluid-escape pipes and hydrate distribution in offshore Sabah (NW Borneo)[J]. Marine Geology, 2018, 395: 82-103. |
[18] | WEI J G, FANG Y X, LU H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea area, South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 622-628. |
[19] | LU H L, SEO Y T, LEE J W, et al. Complex gas hydrate from the Cascadia margin[J]. Nature, 2007, 445(7125): 303-306. |
[20] | BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. |
[21] | MCINTOSH K, VAN AVENDONK H, LAVIER L, et al. Inversion of a hyper-extended rifted margin in the southern central range of Taiwan[J]. Geology, 2013, 41(8): 871-874. |
[22] | 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12): 3280-3291. |
[23] | 何家雄, 夏斌, 陈恭洋, 等. 台西南盆地中新生界石油地质与油气勘探前景[J]. 新疆石油地质, 2006, 27(4): 398-402. |
[24] | 米立军, 何敏, 翟普强, 等. 珠江口盆地深水区白云凹陷高热流背景油气类型与成藏时期综合分析[J]. 中国海上油气, 2019, 31(1): 1-12. |
[25] | 王秀娟. 天然气水合物储层特性与定量评价[M]. 北京: 科学出版社, 2023. |
[26] | ZHANG G X, WANG X J, LI L, et al. Gas hydrate accumulation related to pockmarks and faults in the Zhongjiannan Basin, South China Sea[J]. Frontiers in Earth Science, 2022, 10: 902469. |
[27] | YANG S X, ZHANG G X, ZHANG M, et al. A complex gas hydrate system in the Dongsha Area, South China Sea:results from Drilling Expedition GMGS2[C]// Proceedings of the 8th international conference on gas hydrates (ICGH8-2014). Beijing, China, 2014. |
[28] | BERNDT C, CHI W C, JEGEN M, et al. Tectonic controls on gas hydrate distribution off SW Taiwan[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2): 1164-1184. |
[29] | WANG X J, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. |
[30] | JIN J P, WANG X J, ZHU Z Y, et al. Physical characteristics of high concentrated gas hydrate reservoir in the Shenhu production test area, South China Sea[J]. Journal of Oceanology and Limnology, 2023, 41(2): 694-709. |
[31] |
杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.
DOI |
[32] | 康冬菊, 梁金强, 匡增桂, 等. 元素俘获能谱测井在神狐海域天然气水合物储层评价中的应用[J]. 天然气工业, 2018, 38(12): 54-60. |
[33] | JIN J P, WANG X J, GUO Y Q, et al. Geological controls on the occurrence of recently formed highly concentrated gas hydrate accumulations in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2020, 116: 104294. |
[34] | TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1/2): 225-241. |
[35] | QIAN J, WANG X J, COLLETT T S, et al. Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom simulating reflector in the South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 662-674. |
[36] | MENG M M, LIANG J Q, LU J A, et al. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, Northwest South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177: 103628. |
[37] | 张伟, 梁金强, 陆敬安, 等. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业, 2020, 40(8): 90-99. |
[38] | REN J F, CHENG C, XIONG P F, et al. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea[J]. Journal of Petroleum Science and Engineering, 2022, 215: 110630. |
[39] | WANG X J, LIU B, QIAN J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168: 27-37. |
[40] |
BERNDT C, FESEKER T, TREUDE T, et al. Temporal constraints on hydrate-controlled methane seepage off Svalbard[J]. Science, 2014, 343(6168): 284-287.
DOI PMID |
[41] | SHA Z B, LIANG J Q, ZHANG G X, et al. A seepage gas hydrate system in northern South China Sea: seismic and well log interpretations[J]. Marine Geology, 2015, 366(8): 69-78. |
[42] | WANG X J, ZHOU J L, LI L, et al. Bottom simulating reflections in the South China Sea[M] //MIENERTJ, BERNDTC, TRÉHUA M, et al. World Atlas of submarine gas hydrates in continental margins. Cham, Switzerland: Springer International Publishing, 2022: 163-172. |
[43] |
陈芳, 周洋, 吴聪, 等. 珠江口盆地东部陆坡末次冰期天然气水合物-冷泉活动的记录与时间[J]. 地学前缘, 2017, 24(4): 66-77.
DOI |
[44] | 匡增桂, 方允鑫, 梁金强, 等. 珠江口盆地东部海域高通量流体运移的地貌-地质-地球物理标志及其对水合物成藏的控制[J]. 中国科学: 地球科学, 2018, 48(8): 1033-1044. |
[45] | YAN P, DENG H, LIU H L. The geological structure and prospect of gas hydrate over the Dongsha Slope, South China Sea[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 645-658. |
[46] | 周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4): 1-8. |
[47] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[48] | YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. |
[49] | 施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22. |
[50] | ZHU M Z, GRAHAM S, PANG X, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present: implications for paleoceanographic circulation, northern South China Sea[J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. |
[51] | 颜承志, 施和生, 李元平, 等. 珠江口盆地白云凹陷天然气水合物与浅层气识别及成藏控制因素[J]. 中国海上油气, 2018, 30(6): 25-32. |
[52] | ZHAO F, ALVES T M, WU S G, et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)[J]. Earth and Planetary Science Letters, 2016, 445: 79-91. |
[53] | SUN Q L, JACKSON C A L, MAGEE C, et al. Deeply buried ancient volcanoes control hydrocarbon migration in the South China Sea[J]. Basin Research, 2020, 32(1): 146-162. |
[54] | 吴能友, 杨胜雄, 王宏斌, 等. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J]. 地球物理学报, 2009, 52(6): 1641-1650. |
[55] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学, 2013, 38(5): 907-915. |
[56] | 苏明, 张成, 解习农, 等. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例[J]. 中国科学: 地球科学, 2014, 44: 1807-1820. |
[57] | 张功成, 曾清波, 苏龙, 等. 琼东南盆地深水区陵水17-2大气田成藏机理[J]. 石油学报, 2016, 37(S1): 34-46. |
[58] | 张迎朝, 甘军, 杨希冰, 等. 琼东南盆地陵水凹陷构造演化及其对深水大气田形成的控制作用[J]. 海洋地质前沿, 2017, 33(10): 22-31. |
[59] | 甘军, 张迎朝, 梁刚, 等. 琼东南盆地深水区烃源岩沉积模式及差异热演化[J]. 地球科学, 2019, 44(8): 2627-2635. |
[60] | DENG W, LIANG J Q, KUANG Z G, et al. The variation of free gas distribution within the seeping seafloor hydrate stability zone and its link to hydrate formations in the Qiongdongnan Basin[J]. Acta Geophysica, 2022, 70(3): 1115-1136. |
[61] | LIANG J Q, DENG W, LU J A, et al. A fast identification method based on the typical geophysical differences between submarine shallow carbonates and hydrate bearing sediments in the northern South China Sea[J]. China Geology, 2020, 3(1): 16-27. |
[62] | WEI J G, WU T T, ZHU L Q, et al. Mixed gas sources induced co-existence of sI and sII gas hydrates in the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2021, 128: 105024. |
[63] | LAI H F, QIU H J, LIANG J Q, et al. Geochemical characteristics and gas-to-gas correlation of two leakage-type gas hydrate accumulations in the Western Qiongdongnan Basin, South China Sea[J]. Acta Geologica Sinica(English Edition), 2022, 96(2): 680-690. |
[64] |
郭依群, 杨胜雄, 梁金强, 等. 南海北部神狐海域高饱和度天然气水合物分布特征[J]. 地学前缘, 2017, 24(4): 24-31.
DOI |
[65] | SUN L Y, WANG X J, HE M, et al. Thermogenic gas controls high saturation gas hydrate distribution in the Pearl River Mouth Basin: evidence from numerical modeling and seismic anomalies[J]. Ore Geology Reviews, 2020, 127: 103846. |
[66] | LAI H F, QIU H J, KUANG Z G, et al. Integrated signatures of secondary microbial gas within gas hydrate reservoirs: a case study in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2022, 136: 105486. |
[67] | YOU K H, FLEMINGS P B, MALINVERNO A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. |
[1] | 匡增桂, 任金锋, 邓炜, 赖洪飞, 谢莹峰. 南海北部陆坡天然气水合物钻探发现及成藏特征[J]. 地学前缘, 2025, 32(2): 1-19. |
[2] | 杨金秀, 王琛, 邢兰昌, 魏伟, 张伟, 韩维峰, 赵丽, 刘坤一. 海域天然气水合物相关的流体运移及海底甲烷渗漏研究[J]. 地学前缘, 2025, 32(2): 113-125. |
[3] | 姬梦飞, 王吉亮, 王伟巍, 张杰城, 刘雪芹, 吴时国. 神狐海域细粒沉积物水合物储层的地球物理特征研究[J]. 地学前缘, 2025, 32(2): 126-139. |
[4] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[5] | 管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165. |
[6] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
[7] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[8] | 王秀娟, 韩磊, 刘俊州, 靳佳澎, 匡增桂, 周吉林. 天然气水合物与游离气共存的地球物理特征与识别[J]. 地学前缘, 2025, 32(2): 20-35. |
[9] | 吴能友, 李彦龙, 蒋宇静, 孙金声, 谢文卫, 胡高伟, 王韧, 于彦江, 王金堂, 陈强, 申凯翔, 孙志文, 陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望[J]. 地学前缘, 2025, 32(2): 216-229. |
[10] | 李阳, 李晓光, 陈昌, 崔向东, 赖鹏, 郭鹏超, 任铌, 刘洋, 戚雪晨, 郭美伶. 辽河坳陷西部凹陷雷家地区沙四段杜三层细粒沉积岩储层特征及评价[J]. 地学前缘, 2025, 32(2): 277-289. |
[11] | 李凤磊, 林承焰, 王蛟, 任丽华, 张国印, 朱永峰, 李世银, 张银涛, 关宝珠. 超深层断缝带岩溶缝洞体储层结构分析与智能预测[J]. 地学前缘, 2025, 32(2): 311-331. |
[12] | 赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 2025, 32(2): 36-60. |
[13] | 陈雨核, 任金锋, 李廷微, 徐梦婕, 王笑雪, 廖远涛. 南海北部渗漏型水合物成藏系统的发育特征及其形成演化规律[J]. 地学前缘, 2025, 32(2): 77-93. |
[14] | 孟涛, 穆星, 石泉清, 李继岩, 刘鹏, 方正伟, 赵贤, 牛花朋. 基岩成岩作用对储层发育的影响:以济阳坳陷太古宇基岩为例[J]. 地学前缘, 2025, 32(1): 401-417. |
[15] | 许家鼎, 张重远, 张浩, 白金朋, 张士安, 张盛生, 秦向辉, 孙东生, 何满潮, 吴满路. 青海共和盆地干热岩地应力测量及其储层压裂改造意义分析[J]. 地学前缘, 2024, 31(6): 130-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||