地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 1-19.DOI: 10.13745/j.esf.sf.2024.6.56
• 南海北部天然气水合物钻探发现与富集成藏 • 上一篇 下一篇
收稿日期:
2024-05-28
修回日期:
2024-11-13
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*匡增桂(1983—),男,正高级工程师,主要从事水合物勘查与成藏研究。E-mail:kgz2001@163.com
基金资助:
KUANG Zenggui*(), REN Jinfeng, DENG Wei, LAI Hongfei, XIE Yingfeng
Received:
2024-05-28
Revised:
2024-11-13
Online:
2025-03-25
Published:
2025-03-25
Contact:
*匡增桂(1983—),男,正高级工程师,主要从事水合物勘查与成藏研究。E-mail:kgz2001@163.com
摘要:
天然气水合物因其潜在的能源价值而备受关注,我国自20世纪90年代开始在南海开展水合物调查,截至目前已实施了9个水合物钻探航次,取得了一系列水合物找矿突破。钻探结果证实,南海北部发育多种类型水合物,神狐海域主要发育扩散型水合物,东沙海域发育复合型水合物,琼东南发育渗漏型及砂质型水合物。本文结合钻探成果,详细阐述了各种类型水合物的地震反射特征以及测井响应特征。扩散型天然气水合物在地震上主要表现为显著的BSR以及BSR之上的强正极性反射,在测井上主要表现为高电阻率、高纵波速度和高横波速度,如出现水合物与游离气共存的混合层则在测井上表现为高电阻、低纵波速度、高横波速度和中子-密度反交等特征。渗漏型水合物在地震上通常不发育典型的BSR,BSR之上发育亮点反射或者浅部地层发育上拉反射以及柱状的空白反射,海底发育显著的异常地貌,如丘状体和麻坑,在测井上表现为极高的电阻率、稍微增高的纵波及横波速度、高角度层理等特征。砂质水合物在地震上表现为极强的BSR和指示砂质水合物的强正极性反射,测井上表现为低伽马、极高的电阻率、极高的纵横波速度、略微增高的密度和略微降低的中子孔隙度等特征。最后总结了神狐及琼东南水合物成藏控制因素,认为神狐海域发育的深大断裂以及倾斜的天然堤沉积控制了神狐海域高丰度天然气水合物藏的发育,而琼东南海域水合物发育受古潜山及差异压实作用控制。
中图分类号:
匡增桂, 任金锋, 邓炜, 赖洪飞, 谢莹峰. 南海北部陆坡天然气水合物钻探发现及成藏特征[J]. 地学前缘, 2025, 32(2): 1-19.
KUANG Zenggui, REN Jinfeng, DENG Wei, LAI Hongfei, XIE Yingfeng. Drilling discoveries and accumulation characteristics of gas hydrate in the Northern Slope of South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 1-19.
图1 南海北部天然气水合物钻探航次位置图 GMGS7航次因天气原因而中止。
Fig.1 Locations of gas hydrate drilling legs in the northern South China Sea. Expedition of GMGS7 was halted due to bad weather.
图7 QDN-W09-2018井水合物测井响应特征 a—62-63 mbsf (取样位置见左图红色方框),b—102-103 mbsf为保压岩心样品CT扫描成像。
Fig.7 Logging response of gas hydrate in QDN-W09-2018 a—62-63 mbsf (The location of the sample is indicated as a red box on the left), b—102-103 mbsf are CT images of pressure cores.
图12 神狐海域试采矿体构造-沉积耦合控矿模式
Fig.12 The coupling structuresedimentary control model in Shenhu gas hydrate accumulation where gas hydrate production test has been carried out in 2017 and 2020
图13 琼东南海域水合物稳定带均方根振幅属性图
Fig.13 RMS (root mean square) seismic amplitude attribution map of the base of gas hydrate stability zone in Qiongdongnan area
[1] | SLOAN E D, KOH C. Clathrate hydrates of natural gases[M]. Boca Raton: CRC Press, 2007. |
[2] | YOU K, FLEMINGS P B, MALINVERNO A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. |
[3] | KVENVOLDEN K A, LORENSON T D. The global occurrence of natural gas hydrate[M]//PAULL C K, DILLON W P. Natural gas hydrates: occurrence, distribution, and detection. Washington DC: American Geophysical Union, 2001: 3-18. |
[4] | COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates: a review[C]//COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates-energy resource potential and associated geologic hazards. American Association of Petroleum Geologists Memoir 89, 2009: 146-219. |
[5] | YAMAMOTO K, BOSWELL R, COLLETT TS, et al. Review of past gas production attempts from subsurface gas hydrate deposits and necessity of long-term production testing[J]. Energy & Fuels, 2022, 36: 5047-5062. |
[6] | 张洪涛, 张海启, 祝有海. 中国天然气水合物调查研究现状及其进展[J]. 中国地质, 2007, 34(6): 953-961. |
[7] |
陈忠, 颜文, 陈木宏, 等. 海底天然气水合物分解与甲烷归宿研究进展[J]. 地球科学进展, 2006, 21(4): 394-400.
DOI |
[8] | ZHANG H, YANG S, WU N, et al. China’s first gas hydrate expedition successful[J]. Fire in the ice Methane Hydrate Newsletter (spring-summer issue), 2007, 7(2): 1. |
[9] | ZHANG H, YANG S, WU N, et al. Successful and surprising results for China’s first gas hydrate drilling expedition[J]. Fire in the ice Methane Hydrate Newsletter (Fall issue), 2007, 7(3): 6-9. |
[10] | ZHANG G X, YANG S X, ZHANG M, et al. GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea[J]. Fire in the ice Methane Hydrate Newsletter, 2014, 14(1): 1-5. |
[11] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[12] | YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. |
[13] | KUANG Z G, FANG Y X, LIANG J Q, et al. Geomorphological-geological-geophysical signatures of high-flux fluid flows in the eastern Pearl River Mouth Basin and effects on gas hydrate accumulation[J]. Science China: Earth Sciences, 2018, 61(7): 914-924. |
[14] | ZHU P, MA T, CHEN M, et al. Petrophysical experiment-based evaluation method for the saturation of gas hydrate[J]. Unconventional Resources, 2022, 2: 158-169. |
[15] | WANG X J, HUTCHINSON D R, WU S G, et al. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea[J]. Journal of Geophysical Research, 2011, 116(B5): B05102. |
[16] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学: 中国地质大学学报, 2013, 38(5): 907-915. |
[17] | WANG X, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. |
[18] | ZHANG W, LIANG J Q, WAN Z F, et al. Dynamic accumulation of gas hydrates associated with the channel-levee system in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2020, 117: 104354. |
[19] | ZHANG W, LIANG J Q, LU J A, et al. Accumulation features and mechanisms of high saturation natural gas hydrate in Shenhu Area, northern South China Sea[J]. Petroleum Exploration and Development, 2017, 44(5): 708-719. |
[20] | CHENG C, JIANG T, KUANG Z G, et al. Characteristics of gas chimneys and their implications on gas hydrate accumulation in the Shenhu area, northern south China sea[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103629. |
[21] | ZHANG W, LIANG J Q, WEI J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104191. |
[22] | REN J F, CHENG C, JIANG T, et al. Faults and gas chimneys jointly dominate the gas hydrate accumulation in the Shenhu Area, northern South China Sea[J]. Frontiers in Marine Science, 2023, 10: 1254410. |
[23] | LAI H F, QIU H J, KUANG Z G, et al. Integrated signatures of secondary microbial gas within gas hydrate reservoirs: a case study in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2022, 136: 105486. |
[24] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[25] | DENG W, LI J Q, ZHANG W, et al. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin, northern south China sea[J]. Marine and Petroleum Geology, 2021, 124: 104810. |
[26] | CHENG C, JIANG T, KUANG Z G, et al. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 129: 105118. |
[27] | MENG M, LIANG J, LU J A, et al. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, Northwest South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177: 103628. |
[28] | CHENG C, JIANG T, KUANG Z G, et al. Sand-rich Pleistocene deep-water channels and their implications for gas hydrate accumulation: evidence from the Qiongdongnan Basin, northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 198: 104101. |
[29] | DU H, SHI W Z, WANG R, et al. Dynamic evolution of gas hydrate systems affected by magmatism and Quaternary mass-transport deposits in the Qiongdongnan Basin, South China Sea, and implications for the global carbon cycle[J]. Marine Geology, 2024, 468: 107209. |
[30] | 罗盼, 任建业, 雷超. 南海陆缘伸展破裂过程中的构造迁移和盆地演化[J]. 地质学报, 2024, 98(4): 1101-1113. |
[31] | 李学杰, 王哲, 姚永坚, 等. 南海成因及其演化模式探讨[J]. 中国地质, 2020, 47(5): 1310-1322. |
[32] | TAYLOR B, HAYES D E. The tectonic evolution of the South China Basin[M]//HAYES D E. The tectonic and geologic evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1980: 89-104. |
[33] | BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. |
[34] | LI C F, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983. |
[35] | LI C F, LI J, DING W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1377-1399. |
[36] | 张训华. 中国海域构造地质学[M]. 北京: 海洋出版社, 2008. |
[37] | 丁巍伟, 王渝明, 陈汉林, 等. 台西南盆地构造特征与演化[J]. 浙江大学学报(理学版), 2004, 31(2): 216-220. |
[38] | HAN X Q, SUESS E, HUANG Y Y, et al. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3/4): 243-256. |
[39] | ZHANG G, YANG S, MING Z, et al. GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea[J]. Fire in the ice Methane Hydrate Newsletter, 2014, 14(1): 1-5. |
[40] | FENG D, CHENG M, KIEL S, et al. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 104: 52-59. |
[41] | ZHANG X, DU Z F, LUAN Z D, et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(10): 3700-3713. |
[42] | ZHANG X, DU Z F, ZHENG R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 123: 1-12. |
[43] | 庞雄, 彭大钧, 陈长民, 等. 三级“源-渠-汇” 耦合研究珠江深水扇系统[J]. 地质学报, 2007, 81(6): 857-864. |
[44] | 施和生, 于水明, 梅廉夫, 等. 珠江口盆地惠州凹陷古近纪幕式裂陷特征[J]. 天然气工业, 2009, 29(1): 35-37. |
[45] | 米立军, 张向涛, 汪旭东, 等. 陆丰凹陷古近系构造-沉积差异性及其对油气成藏的控制[J]. 中国海上油气, 2018, 30(5): 1-10. |
[46] | LI G, MEI L F, PANG X, et al. Magmatism within the northern margin of the South China Sea during the post-rift stage: an overview, and new insights into the geodynamics[J]. Earth-Science Reviews, 2022, 225: 103917. |
[47] | 郑民, 贾承造, 李建忠, 等. 全球被动陆缘深水勘探领域富油气特征及与我国南海被动陆缘深水区对比[J]. 地质科技情报, 2010, 29(6): 45-54. |
[48] |
何家雄, 吴文海, 祝有海, 等. 南海北部边缘盆地油气成因及运聚规律与勘探方向[J]. 天然气地球科学, 2010, 21(1): 7-17.
DOI |
[49] | 李鸿明. 琼东南盆地松南低凸起中生代花岗岩潜山储层特征及控制因素分析[D]. 长春: 吉林大学, 2022. |
[50] | LIANG Q Y, HU Y, FENG D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. |
[51] | 苏正, 陈多福. 海洋天然气水合物的类型及特征[J]. 大地构造与成矿学, 2006, 30(2): 256-264. |
[52] | 梁金强, 张光学, 陆敬安, 等. 南海东北部陆坡天然气水合物富集特征及成因模式[J]. 天然气工业, 2016, 36(10): 157-162. |
[53] |
刘昌岭, 孟庆国, 李承峰, 等. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 2017, 24(4): 41-50.
DOI |
[54] | 匡增桂, 方允鑫, 梁金强, 等. 珠江口盆地东部海域高通量流体运移的地貌-地质地球物理标志及其对水合物成藏的控制[J]. 中国科学: 地球科学, 2018, 48(8): 1033-1044. |
[55] |
沙志彬, 梁金强, 苏丕波, 等. 珠江口盆地东部海域天然气水合物钻探结果及其成藏要素研究[J]. 地学前缘, 2015, 22(6): 125-135.
DOI |
[56] | WEI D, JINQIANG L, WEI Z, et al. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 124: 104810. |
[57] | MENG M, LIANG J, LU J, et al. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, Northwest South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177: 103628. |
[58] | 张匡华, 王嘉琳, 仝长亮, 等. 鬼波的受控因素及其对单道地震勘探的影响[J]. 海洋地质前沿, 2024, 40(1): 94-100. |
[59] | 谢莹峰, 陆敬安, 匡增桂, 等. 南海神狐海域水合物三相混合层测井评价方法研究[J]. 现代地质, 2022, 36(1): 182-192. |
[60] | SERIÉ C, HUUSE M, SCHØDT N H. Gas hydrate pingoes: deep seafloor evidence of focused fluid flow on continental margins[J]. Geology, 2012, 40(3): 207-210. |
[61] | COOK A E, GOLDBERG D S, MALINVERNO A. Natural gas hydrates occupying fractures: a focus on non-vent sites on the Indian continental margin and the northern gulf of Mexico[J]. Marine and Petroleum Geology, 2014, 58: 278-291. |
[62] | LEE M W, COLLETT T S. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico gas hydrate joint industry project leg II Green Canyon 955 H well[J]. Marine and Petroleum Geology, 2012, 34(1): 62-71. |
[63] | BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. |
[64] | FUJII T, SUZUKI K, TAKAYAMA T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66(2): 310-322. |
[65] | KUANG Z G, COOK A, REN J F, et al. A flat-lying transitional free gas to gas hydrate system in a sand layer in the Qiongdongnan Basin of the South China Sea[J]. Geophysical Research Letters, 2023, 50(24): e2023GL105744. |
[66] | WANG P X, LI Q Y. History of the South China Sea: a synthesis[M]//WANG P X, LI Q Y. Developments in paleoenvironmental research, vol 13. Dordrecht: Springer, 2009: 485-496. |
[67] | DAIGLE H, COOK A, FANG Y, et al. Gas-driven tensile fracturing in shallow marine sediments[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB020835. |
[68] | BOUDREAU B P, ALGAR C, JOHNSON B D, et al. Bubble growth and rise in soft sediments[J]. Geology, 2005, 33(6): 517-520. |
[1] | 陈雨核, 任金锋, 李廷微, 徐梦婕, 王笑雪, 廖远涛. 南海北部渗漏型水合物成藏系统的发育特征及其形成演化规律[J]. 地学前缘, 2025, 32(2): 77-93. |
[2] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[3] | 任金锋, 陈雨核, 徐梦婕, 李廷微, 王笑雪, 赖洪飞, 谢莹锋, 匡增桂. 南海北部琼东南盆地砂质天然气水合物储层沉积特征及成藏模式[J]. 地学前缘, 2025, 32(2): 94-112. |
[4] | 刘晓磊, 李伟甲, 陆杨, 李星宇, 张淑玉, 余和雨. 南海北部大陆边缘沉积物波分布特征及形成机制研究进展[J]. 地学前缘, 2023, 30(2): 81-95. |
[5] | 季春生, 贾永刚, 朱俊江, 胡乃利, 范智涵, 胡聪, 冯学志, 余和雨, 刘博. 深海海底边界层原位观测系统研发与应用[J]. 地学前缘, 2022, 29(5): 265-274. |
[6] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[7] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[8] | 王明健, 潘军, 高红芳, 黄龙, 李霞. 南海北部—东海南部中生代盆地演化与油气资源潜力[J]. 地学前缘, 2022, 29(2): 294-302. |
[9] | 孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270. |
[10] | 茅晟懿,朱小畏,贾国东,吴能友. 长链烷基二醇及其指标在南海北部粤东沿海上升流地区的环境指示[J]. 地学前缘, 2018, 25(4): 285-298. |
[11] | 马云,孔亮,梁前勇,林进清,李三忠. 南海北部东沙陆坡主要灾害地质因素特征[J]. 地学前缘, 2017, 24(4): 102-111. |
[12] | 梁前勇,赵静,夏真,杨胜雄,康建华,林进清,雷知声. 南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨[J]. 地学前缘, 2017, 24(4): 89-101. |
[13] | 张光学,陈芳,沙志彬,梁金强,苏新,陆红锋. 南海东北部天然气水合物成藏演化地质过程[J]. 地学前缘, 2017, 24(4): 15-23. |
[14] | 梁静之, 黄宝琦, 董轶婷, 贾文博, 周彦希. 南海北部MD12-3432站MIS 11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4): 292-300. |
[15] | 张劼, 雷怀彦, 汪卫国, 郝赛赛, 龚楚君. 南海北部陆坡沉积物中硫酸盐浓度变化模型与硫酸盐甲烷界面(SMI)的计算[J]. 地学前缘, 2015, 22(4): 290-298. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||