地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 94-112.DOI: 10.13745/j.esf.sf.2024.6.52
• 南海北部天然气水合物储层沉积特征与运聚体系 • 上一篇 下一篇
任金锋1(), 陈雨核2, 徐梦婕1, 李廷微1, 王笑雪1, 赖洪飞1, 谢莹锋1, 匡增桂1,*(
)
收稿日期:
2023-04-10
修回日期:
2024-12-31
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*匡增桂(1983—),男,正高级工程师,主要从事水合物勘查与成藏研究。E-mail:kgz2001@163.com
作者简介:
任金锋(1987—),男,博士,高级工程师,主要从事天然气水合物储层沉积与成藏研究。E-mail:jf_ren@163.com
基金资助:
REN Jinfeng1(), CHEN Yuhe2, XU Mengjie1, LI Tingwei1, WANG Xiaoxue1, LAI Hongfei1, XIE Yingfeng1, KUANG Zenggui1,*(
)
Received:
2023-04-10
Revised:
2024-12-31
Online:
2025-03-25
Published:
2025-03-25
摘要:
砂质水合物储层是国际上水合物勘查试采的首选目标,我国在南海北部琼东南盆地钻探发现了高饱和度砂质水合物。通过三维地震、测井、岩心及测试分析资料,证实了规模化成藏的砂质水合物藏。砂质水合物储层表现为低自然伽马、低西格玛、高电阻率、高声波速度和T2谱信号幅度急剧降低等测井响应特征,同时纵波及横波信号均明显衰减。砂层呈楔形近水平席状分布。岩性为粗粉砂-细砂为主,属于深水浊积体系末端的朵体沉积。剖面上,水合物和游离气具有同层分布、横向过渡的特点。平面上,水合物藏呈现椭圆形分布,中部发育伴生游离气,外围发育水合物。与世界其他海域钻探发现的倾斜砂质水合物储层不同的是,该水合物藏是在稳定域底界附近的水平砂层,在下伏气烟囱背景下局部高热流驱动和上覆细粒沉积地层的封盖下,充足游离气由中部向外横向长运移而形成大面积高饱和度水合物。
中图分类号:
任金锋, 陈雨核, 徐梦婕, 李廷微, 王笑雪, 赖洪飞, 谢莹锋, 匡增桂. 南海北部琼东南盆地砂质天然气水合物储层沉积特征及成藏模式[J]. 地学前缘, 2025, 32(2): 94-112.
REN Jinfeng, CHEN Yuhe, XU Mengjie, LI Tingwei, WANG Xiaoxue, LAI Hongfei, XIE Yingfeng, KUANG Zenggui. Sedimentary characteristics and accumulation model of sand-rich gas hydrate reservoir in the Qiongdongnan Basin, northern South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 94-112.
图1 琼东南盆地区域地质和天然气水合物分布图 a—琼东南盆地地理位置及研究区位置图;b—研究区甲烷水合物稳定带底界的地震均方根振幅图(高振幅值代表游离气分布范围)。
Fig.1 Regional geological map and gas hydrate distribution of Qiongdongnan Basin
图2 研究区层序地层格架及其沉积体系 a—松南低凸起之上穿越水合物矿体的地震层序地层解释图(图中垂直的虚线代表平面位置折线的位置)(位置见图1b);b—研究区第四纪水道-天然堤和块体流沉积体系(位置见图2a)。
Fig.2 Sequence stratigraphic framework and associated sedimentary system in the study area
图5 GMGS8-W05井127.1~132.3 mbsf岩心的岩性分类及其颗粒组分分布 a—岩性三角图;b—颗粒组分分布图。
Fig.5 The lithological classification and grain fraction of sediment cores obtained from 127.1-132.3 mbsf of Well GMGS8-W05
图6 GMGS8-W05井测井GR—自然伽马、RES_BD—深纽扣电阻率、RHON—中子密度、DTCO—纵波速度与过井剖面地震联合标定及其地震地层单元划分
Fig.6 Calibration of well-seismic section in Well GMGS8-W05 and associated division of seismic stratigraphic units
图8 GMGS6-W09井测井GR—自然伽马、RES_BD—电阻率、RHON—中子密度和DTCO—纵波速度与过井剖面地震的联合标定及其地震地层单元划分
Fig.8 Calibration of well-seismic section in Well GMGS6-W09 and associated division of seismic stratigraphic units
图9 GMGS8-W22井测井(GR—自然伽马、RES_BD—电阻率、RHON—中子密度和DTCO—纵波速度)与过井剖面地震的联合标定及其地震地层单元划分
Fig.9 Calibration of well-seismic section in Well GMGS8-W22 and associated division of seismic stratigraphic units
图10 水合物矿体与水道天然堤沉积体系的空间配置关系 a—过GMGS5-W09和GMGS8-W22井的地震剖面(位置图见图1b);b—过GMGS5-W08和GMGS6-W09井的地震剖面(位置图见图1b);c—过GMGS5-W07和GMGS8-W05井的地震剖面(位置图见图1b)。
Fig.10 The spatial distribution of the gas hydrate reservoir in relation to the channel-levee system
图13 气烟囱背景下砂质水合物和游离气同层分布、横向过渡成藏模式
Fig.13 Accumulation model of a co-layered distribution and a lateral transition of gas hydrate and free gas in the background of a gas chimney
图14 世界海域典型砂质水合物储层沉积特征对比图(b据文献[9]修改;c据文献[8]修改;d据文献[39]修改;e据文献[11]修改) a—深水浊积沉积相关的地貌单元示意图;b—日本Nankai海槽;c—印度孟加拉湾K-G盆地;d—美国墨西哥湾WR 313区块;e—美国墨西哥湾GC955区块;f—中国南海琼东南盆地。
Fig.14 Comparison of sedimentary characteristics of typical sand-rich gas hydrate reservoirs in the world sea (b) Modified after [9]; (c) Modified after [8]; (d) Modified after [39]; (e) Modified after [11].
[1] | BOSWELL R W, HANCOCK S, YAMAMOTO K, et al. Natural gas hydrates: Status of potential as an energy resource[M]//LETCHER T M. Future energy: improved, sustainable and clean options for our planet 2020. New York: Elsevier Science. 2020: 111-135. |
[2] |
张金华, 方念乔, 魏伟, 等. 天然气水合物成藏条件与富集控制因素[J]. 中国石油勘探, 2018, 23(3): 35-46.
DOI |
[3] |
雷裕红, 宋颖睿, 张立宽, 等. 海洋天然气水合物成藏系统研究进展及发展方向[J]. 石油学报, 2021, 42(6): 801-820.
DOI |
[4] | 吴能友, 苏明, 徐华宁, 等. 天然气水合物运聚体系:理论、方法与实践[M]. 合肥: 安徽科学技术出版社, 2020: 20-23. |
[5] | BOSWELL R W, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215. |
[6] | 王秀娟. 天然气水合物储层特性与定量评价[M]. 北京: 科学出版社, 2023: 17-21. |
[7] | FUJII T, SUZUKI K, TAKAYAMA T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 310-322. |
[8] | ITO T, KOMATSU Y, FUJII T, et al. Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 368-378. |
[9] | COLLETT T S, BOSWELL R W, WILLIAM F K, et al. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: gas hydrate systems along the eastern continental margin of India[J]. Marine and Petroleum Geology, 2019, 108: 39-142. |
[10] | KUMAR P, COLLETT T S, VISHWANATH K, et al. Gas hydrate-bearing sand reservoir systems in the offshore of India: results of the India National Gas Hydrate Program Expedition 01[J]. Fire in the Ice, 2016, 16(1): 1-8. |
[11] | BOSWELL R W, FRYE M, SHELANDER D, et al. Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 134-149. |
[12] | YOU K H, FLEMINGS P B, MALINVERNO A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196. |
[13] | MALINVERNO A. Marine gas hydrates in thin sand layers that soak up microbial methane[J]. Earth and Planetary Science Letters, 2010, 292(3/4): 399-408. |
[14] | YOU K H, FLEMINGS P B. Methane hydrate formation in thick sandstones by free gas flow[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 4582-4600. |
[15] |
YE J L, WEI J G, LIANG J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104: 29-39.
DOI |
[16] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[17] | 张伟, 梁金强, 陆敬安, 等. 琼东南盆地典型渗漏型天然气水合物成藏系统的特征与控藏机制[J]. 天然气工业, 2020, 40(8): 90-99. |
[18] | KUANG Z G, COOK A, REN J F, et al. A flat-lying transitional free gas to gas hydrate system in a sand layer in the Qiongdongnan Basin of the South China Sea[J]. Geophysical Research Letters, 2023, 50(24): e2023GL105744. |
[19] | 任金锋. 琼东南盆地陆架边缘斜坡地形的定量演化过程[D]. 武汉: 中国地质大学(武汉), 2016. |
[20] | 雷超, 任建业, 裴健翔, 等. 琼东南盆地深水区构造格局和幕式演化过程[J]. 地球科学, 2011, 36(1): 151-162. |
[21] | LAI H F, FANG Y X, KUANG Z G, et al. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: implications from site GMGS5-W08[J]. Marine and Petroleum Geology, 2021, 123: 104774. |
[22] | MENG M M, LIANG J Q, KUANG Z G, et al. Distribution Characteristics of Quaternary Channel Systems and Their Controlling Factors in the Qiongdongnan Basin, South China Sea[J]. Frontiers in Earth Science, 2022, 10: 902517. |
[23] | 孙鲁一, 李清平, 陈芳, 等. 琼东南盆地块体搬运沉积区多类型水合物赋存特征与数值模拟[J]. 地球物理学报, 2023, 66(11): 4721-4741. |
[24] | ZHAN L S, MATSUSHIMA J. Frequency-dependent P-wave attenuation in hydrate-bearing sediments: a rock physics study at Nankai Trough, Japan[J]. Geophysical Journal International, 2018, 214(3): 1961-1985. |
[25] |
王吉亮, 吴时国. 墨西哥湾GC955H井天然气水合物储层声波衰减特征[J]. 地球物理学报, 2016, 59(4): 1535-1542.
DOI |
[26] | TSUJI Y, ISHIDA H, NAKAMIZU M, et al. Overview of the MITI Nankai trough wells: a milestone in the evaluation of methane hydrate resources[J]. Resource Geology, 2004, 54(1): 3-10. |
[27] | NOGUCHI S, SHIMODA N, TAKANO O, et al. 3-D internal architecture of methane hydrate-bearing turbidite channels in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2011, 28(10): 1817-1828. |
[28] |
王吉亮, 吴时国, 姚永坚, 等. 印度东部大陆边缘天然气水合物储层地球物理研究进展[J]. 热带海洋学报, 2017, 36(6): 90-99.
DOI |
[29] | NANDA J, SHUKLA K M, LALL M V, et al. Lithofacies characterization of gas hydrate prospects discovered during the National Gas Hydrate Program expedition 02, offshore Krishna-Godavari Basin, India[J]. Marine and Petroleum Geology, 2019, 108: 226-238. |
[30] | PANDEY L, SAIN K, JOSHI A K. Estimate of gas hydrate saturations in the Krishna-Godavari basin, eastern continental margin of India, results of expedition NGHP-02[J]. Marine and Petroleum Geology, 2019, 108: 581-594. |
[31] | SANTRA M, FLEMINGS P B, Heidari M, et al. Occurrence of high-saturation gas hydrate in a fault-compartmentalized anticline and the importance of seal, Green Canyon, abyssal northern Gulf of Mexico[J]. AAPG Bulletin, 2022, 106(5): 981-1003. |
[32] | MEAZELL P K, FLEMINGS P B. The evolution of seafloor venting from hydrate-sealed gas reservoirs[J]. Earth and Planetary Science Letters, 2022, 579: 117336. |
[33] | COLLETT T S, LEE M W, ZYRIANOVA M V, et al. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis[J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. |
[34] | HILLMAN J I T, COOK A E, DAIGLE H, et al. Gas hydrate reservoirs and gas migration mechanisms in the Terrebonne Basin, Gulf of Mexico[J]. Marine and Petroleum Geology, 2017, 86: 1357-1373. |
[35] | SANTRA M, FLEMINGS P B, SCOTT E, et al. Evolution of gas hydrate-bearing deep-water channel-levee system in abyssal Gulf of Mexico: levee growth and deformation[J]. AAPG Bulletin, 2020, 104(9): 1921-1944. |
[36] | MEAZELL P K, FLEMINGS P B, SANTRA M, et al. Sedimentology and stratigraphy of a deep-water gas hydrate reservoir in the northern Gulf of Mexico[J]. AAPG Bulletin, 2020, 104(9): 1945-1969. |
[37] | PHILLIPS S C, FLEMINGS P B, HOLLAND M E, et al. High concentration methane hydrate in a silt reservoir from the deep-water Gulf of Mexico[J]. AAPG Bulletin, 2020, 104(9): 1971-1995. |
[38] | FLEMINGS P B, COOK A E, COLLETT T S, et al. Gas hydrates in Green Canyon Block 955, deep-water Gulf of Mexico: part II, insights and future challenges[J]. AAPG Bulletin, 2022, 106(5): 937-947. |
[39] | REN J F, QIU H J, KUANG Z G, et al. Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea[J]. China Geology, 2024, 7(1): 36-50. |
[1] | 匡增桂, 任金锋, 邓炜, 赖洪飞, 谢莹峰. 南海北部陆坡天然气水合物钻探发现及成藏特征[J]. 地学前缘, 2025, 32(2): 1-19. |
[2] | 陈雯霖, 郑求根, 黄一鸣, 张懿, 林畅松. 南海南缘礼乐盆地在南海扩张前的位置恢复[J]. 地学前缘, 2023, 30(5): 420-429. |
[3] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[4] | 马畅, 葛家旺, 赵晓明, 廖晋, 姚哲, 朱继田, 方小宇, 向柱. 南海北部琼东南盆地第四系陆架边缘轨迹迁移及深水沉积模式[J]. 地学前缘, 2022, 29(4): 55-72. |
[5] | 陈欢庆, 朱筱敏, 张功成, 张亚雄, 张琴, 刘长利. 海相断陷盆地输导体系分类及组合模式特征: 以琼东南盆地古近系陵水组为例[J]. 地学前缘, 2021, 28(1): 282-294. |
[6] | 周立宏,孙志华,王振升,苏俊青,楼达,李三忠,胡俊刚,王海强,索艳慧. 印缅俯冲增生楔气烟囱分带性及油气成藏规律[J]. 地学前缘, 2017, 24(4): 352-369. |
[7] | 宫伟,李朝阳,姜效典. 青藏高原隆升与南海开启:南海西北部盆山耦合体系[J]. 地学前缘, 2017, 24(4): 268-283. |
[8] | 施小斌,于传海,陈梅,杨小秋,赵俊峰. 南海北部陆缘热流变化特征及其影响因素分析[J]. 地学前缘, 2017, 24(3): 56-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||