地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 113-125.DOI: 10.13745/j.esf.sf.2024.6.54
• 南海北部天然气水合物储层沉积特征与运聚体系 • 上一篇 下一篇
杨金秀1,2(), 王琛2, 邢兰昌3, 魏伟4,*(
), 张伟1, 韩维峰4, 赵丽2, 刘坤一2
收稿日期:
2024-06-30
修回日期:
2024-11-20
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*魏 伟(1966—),男,博士,高级工程师,主要从事天然气水合物相关方面的研究。E-mail:weile@petrochina.com.cn
作者简介:
杨金秀(1984—),女,博士,讲师,主要从事天然气水合物、海洋地质学和油气地球物理勘探方面的研究。E-mail:yangjinxiu@upc.edu.cn
基金资助:
YANG Jinxiu1,2(), WANG Chen2, XING Lanchang3, WEI Wei4,*(
), ZHANG Wei1, HAN Weifeng4, ZHAO Li2, LIU Kunyi2
Received:
2024-06-30
Revised:
2024-11-20
Online:
2025-03-25
Published:
2025-03-25
摘要:
认清地质历史时期相关的流体运移和海底甲烷渗漏是天然气水合物研究中的重要问题,对了解水合物成藏、评价水合物分解过程中甲烷渗漏可能造成的环境影响有重要指导作用。本文通过对全球海域大量天然气水合物发育区进行再解释,分析流体运移通道、海底甲烷渗漏与天然气水合物系统三者间的关系。首先,按照流体运移通道在水合物系统中的作用将其分为两类:类型Ⅰ主要分布在水合物稳定区底界(BSR)之下,为水合物系统成藏提供气源的通道,类型Ⅱ分布在BSR以浅,甚至延伸至海底,为水合物系统中的甲烷逃逸提供渗漏通道。另外,分析认为多边形断层作为通道疏导油气垂向运移的作用是有限的。其次,根据海底甲烷渗漏与天然气水合物系统的位置关系以及渗漏的甲烷气源条件,将海底甲烷渗漏特征分为三大类五小类:水合物稳定边界以深(水合物系统气源、非水合物系统气源)、水合物稳定边界附近(水合物系统气源、非水合物系统气源)和水合物稳定边界以浅(非水合物系统气源)。其中,水合物稳定区向陆分布边界LLGHSZ(landward limit of gas hydrate stability zone)附近的甲烷渗漏强度和密度最大。综上,本文提出的流体运移通道与海底甲烷渗漏特征的分类方法对认识动态天然气水合物系统的成藏和分解过程、评价相关的环境和气候影响具有一定的指导作用。
中图分类号:
杨金秀, 王琛, 邢兰昌, 魏伟, 张伟, 韩维峰, 赵丽, 刘坤一. 海域天然气水合物相关的流体运移及海底甲烷渗漏研究[J]. 地学前缘, 2025, 32(2): 113-125.
YANG Jinxiu, WANG Chen, XING Lanchang, WEI Wei, ZHANG Wei, HAN Weifeng, ZHAO Li, LIU Kunyi. Fluid migration and seabed methane seepage associated with marine gas hydrate systems[J]. Earth Science Frontiers, 2025, 32(2): 113-125.
图1 a—Mauritania海域地震剖面显示BSR分布;b—水合物相平衡曲线;c—水合物系统示意图
Fig.1 (a) A seismic profile from offshore Mauritania showing the BSR distribution; (b) Phase equilibrium curve of gas hydrate stability; (c) Schematic diagram of the gas hydrate system.
工区位置 | LLGHSZ 深度/m | 相关甲烷渗透特征 | CH4通量 | 诱发机制 | 参考文献 |
---|---|---|---|---|---|
Rio Grande Cone (RGC) of SE Brazil | 515 | 麻坑、自生碳酸盐 | 100 mmol m-2·a-1 | 海洋变暖 | [ |
US Atlantic margin | 505 | 自生碳酸盐、深水珊瑚、 羽状流 | / | 中层水持续升温、 地层侵蚀 | [ |
Continental margin of West Spitsbergen | 400 | 羽状流 | / | 向北流动的西斯匹 次卑尔根的暖流 | [ |
Offshore Western Svalbard | 360~410 | 羽状流、有孔虫δ13C值偏负 | 30,550 mmol m-2·a-1 | 海洋变暖 | [ |
Arctic Ocean | 290 | 自生碳酸盐 | 区域上BSR下移20 m, 释放100 Gt C | 海洋变暖 | [ |
Continental slopes of the Black Sea | 200~300 | 麻坑 | / | 海洋变暖 | [ |
表1 不同地区LLGHSZ及相关甲烷渗漏分布特征及诱发机制
Table 1 Characteristics of LLGHSZ, related methane seepage distributions, and triggering mechanisms in different regions
工区位置 | LLGHSZ 深度/m | 相关甲烷渗透特征 | CH4通量 | 诱发机制 | 参考文献 |
---|---|---|---|---|---|
Rio Grande Cone (RGC) of SE Brazil | 515 | 麻坑、自生碳酸盐 | 100 mmol m-2·a-1 | 海洋变暖 | [ |
US Atlantic margin | 505 | 自生碳酸盐、深水珊瑚、 羽状流 | / | 中层水持续升温、 地层侵蚀 | [ |
Continental margin of West Spitsbergen | 400 | 羽状流 | / | 向北流动的西斯匹 次卑尔根的暖流 | [ |
Offshore Western Svalbard | 360~410 | 羽状流、有孔虫δ13C值偏负 | 30,550 mmol m-2·a-1 | 海洋变暖 | [ |
Arctic Ocean | 290 | 自生碳酸盐 | 区域上BSR下移20 m, 释放100 Gt C | 海洋变暖 | [ |
Continental slopes of the Black Sea | 200~300 | 麻坑 | / | 海洋变暖 | [ |
工区位置 | BSR深度/ (TWT s-1) | 水合物系统 | 相关通道 | GHL位置 | 参考 文献 |
---|---|---|---|---|---|
Offshore Mauritania | 3.0~0.88 | BSR,GHL,FGZ | 断层、底辟 | 位于GHSZ底界之上 | [ |
Niger Delta | 3.6~3.2 | BSR,GHL,GZ | 断层、气烟囱 | 位于GHSZ内部 | [ |
Qiongdongnan Basin | 2.5~2.0 | BSR | 气烟囱 | [ | |
Active Margins off SW Taiwan | 2.4~2.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
LW3 Area: The Northern Slope of the South China Sea | 2.0~1.9 | BSR,GHL,FGZ | 断层 | 位于GHSZ底界之上 | [ |
Krishna-Godavari Basin | 3.13~2.75 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Shenhu area in South China Sea | 2.1~1.9 | BSR,FGZ | 泥底辟、气烟囱、 渗透性砂岩层 | [ | |
Porangahau Ridge | 3.6~3.4 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Offshore Colombia | 2.5~1.5 | BSR,FGZ | 断层、渗透性砂岩层 | [ | |
Eastern South Korea Plateau (ESKP),East Sea | 1.4~1.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Fiordland margin SW | 2.9~1.2 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
Northern deep-water Gulf of Mexico | 2.42~1.74 | BSR,GHL,FGZ | 断层、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Svyatogor Ridge | 2.25~2.20 | BSR,GHL,FGZ | 断层、气烟囱 | 位于GHSZ底界之上、 位于GHSZ内部 | [ |
Cameroon margin,offshore West Africa | 2.5~1.9 | BSR,FGZ | 断层、气烟囱 | [ | |
Southern Hikurangi margin (New Zealand) | 1.15~0.90 | BSR,GHL,FGZ | 渗透性砂岩层 | GHL位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Northwestern Sea of Okhotsk | 1.0~0.6 | BSR,FGZ | 泥底辟、气烟囱、断层 | [ | |
Eastern margin of the Sea of Japan | 1.7~1.5 | BSR,GHL,FGZ | 气烟囱、断层 | 位于GHSZ内部,高于BSR | [ |
Offshore Oregon | 1.3~1.2 | BSR,GHL,FGZ | 气烟囱、断层、 渗透性砂岩层 | 位于GHSZ内部,高于BSR | [ |
Chilean margin offshore of Valdivia (40°S) | 4.38~2.5 | BSR,GHL,FGZ | 断层 | 含水合物层位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Offshore mid-Norway | 1.8~1.5 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
表2 不同地区天然气水合物系统与流体运移通道的伴生关系
Table 2 Relationships between gas hydrate systems and associated fluid migration conduits in different regions worldwide
工区位置 | BSR深度/ (TWT s-1) | 水合物系统 | 相关通道 | GHL位置 | 参考 文献 |
---|---|---|---|---|---|
Offshore Mauritania | 3.0~0.88 | BSR,GHL,FGZ | 断层、底辟 | 位于GHSZ底界之上 | [ |
Niger Delta | 3.6~3.2 | BSR,GHL,GZ | 断层、气烟囱 | 位于GHSZ内部 | [ |
Qiongdongnan Basin | 2.5~2.0 | BSR | 气烟囱 | [ | |
Active Margins off SW Taiwan | 2.4~2.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
LW3 Area: The Northern Slope of the South China Sea | 2.0~1.9 | BSR,GHL,FGZ | 断层 | 位于GHSZ底界之上 | [ |
Krishna-Godavari Basin | 3.13~2.75 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Shenhu area in South China Sea | 2.1~1.9 | BSR,FGZ | 泥底辟、气烟囱、 渗透性砂岩层 | [ | |
Porangahau Ridge | 3.6~3.4 | BSR,GHL,FGZ | 渗透性砂岩层 | 位于GHSZ内部 | [ |
Offshore Colombia | 2.5~1.5 | BSR,FGZ | 断层、渗透性砂岩层 | [ | |
Eastern South Korea Plateau (ESKP),East Sea | 1.4~1.0 | BSR,GHL,FGZ | 气烟囱、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Fiordland margin SW | 2.9~1.2 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
Northern deep-water Gulf of Mexico | 2.42~1.74 | BSR,GHL,FGZ | 断层、渗透性砂岩层 | 位于GHSZ底界之上 | [ |
Svyatogor Ridge | 2.25~2.20 | BSR,GHL,FGZ | 断层、气烟囱 | 位于GHSZ底界之上、 位于GHSZ内部 | [ |
Cameroon margin,offshore West Africa | 2.5~1.9 | BSR,FGZ | 断层、气烟囱 | [ | |
Southern Hikurangi margin (New Zealand) | 1.15~0.90 | BSR,GHL,FGZ | 渗透性砂岩层 | GHL位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Northwestern Sea of Okhotsk | 1.0~0.6 | BSR,FGZ | 泥底辟、气烟囱、断层 | [ | |
Eastern margin of the Sea of Japan | 1.7~1.5 | BSR,GHL,FGZ | 气烟囱、断层 | 位于GHSZ内部,高于BSR | [ |
Offshore Oregon | 1.3~1.2 | BSR,GHL,FGZ | 气烟囱、断层、 渗透性砂岩层 | 位于GHSZ内部,高于BSR | [ |
Chilean margin offshore of Valdivia (40°S) | 4.38~2.5 | BSR,GHL,FGZ | 断层 | 含水合物层位于BSR上部、 位于GHSZ内部,高于BSR | [ |
Offshore mid-Norway | 1.8~1.5 | BSR,GHL | 无 | 位于GHSZ底界之上 | [ |
图3 Ⅰ、Ⅱ型流体运移通道与BSR垂向分布关系示意图 (a)断层;(b)气烟囱;(c)底辟、不整合面和泥火山等。
Fig.3 Schematic diagram of the vertical distribution relationship between type I and type II fluid migration conduits and the BSR. a—Faults; b—Gas chimneys; c—Diapirs, unconformity surfaces, and mud volcanoes.
图4 与水合物相关的Ⅰ、Ⅱ型流体运移通道分布三维示意图
Fig.4 3D schematic diagram showing the spatial distribution of type Ⅰ and Ⅱ fluid migration conduits which are gas hydrate related
图5 多边形断层分布特征(据文献[60]修改) a—珠江口盆地地震剖面;b—Lower Congo盆地地震剖面。
Fig.5 Distribution characteristics of polygonal faults (a) A seismic profile from the Pearl River Mouth Basin; (b) A seismic profile from the Lower Congo Basin (modified from [60]).
图7 海底甲烷渗漏特征在A,B和C 3个区域的分布直方图:麻坑(a)和碳酸盐岩(b)
Fig.7 Distribution histograms of seabed methane seepage features in zones A, B, and C: pockmarks (a) and carbonates (b).
图8 海底甲烷渗漏特征、天然气水合物系统及相关流体运移通道的空间分布关系示意图
Fig.8 Schematic diagram of the spatial distribution relationships among submarine methane seepage features, gas hydrate systems, and related fluid migration conduits.
[1] | QIN X W, LIANG Q Y, YE J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. |
[2] | KVENVOLDEN K A. Gas hydrates: geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187. |
[3] | BIASTOCH A, TREUDE T, RÜPKE L H, et al. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification[J]. Geophysical Research Letters, 2011, 38(8). |
[4] |
KETZER M, PRAEG D, RODRIGUES L F, et al. Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere[J]. Nature Communications, 2020, 11: 3788.
DOI PMID |
[5] | RUPPEL C D, KESSLER J D. The interaction of climate change and methane hydrates[J]. Reviews of Geophysics, 2017, 55(1): 126-168. |
[6] | COLLETT T, JOHNSON A, KNAPP C, et al. Natural gas hydrates: a review[M]//COLLETT T, JOHNSON A, KNAPP C, et al. Natural gas hydrates: energy resource potential and associated geologic hazards. AAPG Memoir 89: American Association of Petroleum Geologists, 2009: 146-219. |
[7] | JAMES R H, BOUSQUET P, BUSSMANN I, et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review[J]. Limnology and Oceanography, 2016, 61(S1): S283-S299. |
[8] |
KENNETT J P, CANNARIATO K G, HENDY I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288(5463): 128-133.
PMID |
[9] | MASLIN M, OWEN M, BETTS R, et al. Gas hydrates: past and future geohazard?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1919): 2369-2393. |
[10] | PORTNOV A, SMITH A J, MIENERT J, et al. Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf[J]. Geophysical Research Letters, 2013, 40(15): 3962-3967. |
[11] | LI Y Y, CHANG J Y, LU H L. Geochemical characteristics of gases associated with natural gas hydrate[J]. Frontiers in Marine Science, 2022, 9: 968647. |
[12] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[13] | YANG J X, DAVIES R J. Gravity-driven faults: Migration pathways for recycling gas after the dissociation of marine gas hydrates[J]. Marine Geology, 2013, 336: 1-9. |
[14] | YANG J X, LU M Y, YAO Z G, et al. A geophysical review of the seabed methane seepage features and their relationship with gas hydrate systems[J]. Geofluids, 2021: 9953026. |
[15] | YANG J X. 3D seismic analysis of subsurface gas migration and the gas hydrate system offshore Mauritania[D]. Durham: Durham University, 2013. |
[16] | GRAVES C A, STEINLE L, REHDER G, et al. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6185-6201. |
[17] | PANIERI G, GRAVES C A, JAMES R H. Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 521-537. |
[18] |
BERNDT C, FESEKER T, TREUDE T, et al. Temporal constraints on hydrate-controlled methane seepage off svalbard[J]. Science, 2014, 343(6168): 284-287.
DOI PMID |
[19] | SKARKE A, RUPPEL C, KODIS M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7(9): 657-661. |
[20] | WESTBROOK G K, THATCHER K E, ROHLING E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15): L15608. |
[21] | RIEDEL M, FREUDENTHAL T, BIALAS J, et al. In-situ borehole temperature measurements confirm dynamics of the gas hydrate stability zone at the upper Danube deep sea fan, Black Sea[J]. Earth and Planetary Science Letters, 2021, 563: 116869. |
[22] | DICKENS G R. Modeling the global carbon cycle with a gas hydrate capacitor:significance for the latest Paleocene thermal maximum. In: Natural Gas Hydrates:occurrence, distribution, and detection[M]. Washington D C: American Geophysical Union, 2013: 19-38. |
[23] | DICKENS G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 169-183. |
[24] |
CRÉMIÈRE A, LEPLAND A, CHAND S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J]. Nature Communications, 2016, 7: 11509.
DOI PMID |
[25] | KENNETT J P. Methane hydrates in Quaternary climate change: The clathrate gun hypothesis[M]. Washington, D C: American Geophysical Union, 2003. |
[26] | BINTANJA R, VAN DE WAL R S W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles[J]. Nature, 2008, 454(7206): 869-872. |
[27] | MIENERT J, VANNESTE M, BÜNZ S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide[J]. Marine and Petroleum Geology, 2005, 22(1/2): 233-244. |
[28] | HESTER K C, PELTZER E T, WALZ P M, et al. A natural hydrate dissolution experiment on complex multi-component hydrates on the sea floor[J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6747-6756. |
[29] | SASSEN R, MILKOV A V, OZGUL E, et al. Gas venting and subsurface charge in the Green Canyon area, Gulf of Mexico continental slope evidence of a deep bacterial methane source?[J]. Organic Geochemistry, 2003, 34(10): 1455-1464. |
[30] | LIANG Q Y, XIAO X, ZHAO J, et al. Geochemistry and sources of hydrate-bound gas in the shenhu area, northern South China Sea: insights from drilling and gas hydrate production tests[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109459. |
[31] | ZHANG W, LIANG J Q, WEI J G, et al. Origin of natural gases and associated gas hydrates in the shenhu area, northern South China Sea: results from the China gas hydrate drilling expeditions[J]. Journal of Asian Earth Sciences, 2019, 183: 103953. |
[32] | SU P B, LIANG J Q, PENG J, et al. Petroleum systems modeling on gas hydrate of the first experimental exploitation region in the Shenhu area, northern South China sea[J]. Journal of Asian Earth Sciences, 2018, 168: 57-76. |
[33] | POHLMAN J W, CANUEL E A, CHAPMAN N R, et al. The origin of thermogenic gas hydrates on the northern Cascadia Margin as inferred from isotopic (13C/12C and D/H) and molecular composition of hydrate and vent gas[J]. Organic Geochemistry, 2005, 36(5): 703-716. |
[34] | YANG J X, DAVIES R J, HUUSE M. Gas migration below gas hydrates controlled by mass transport complexes, offshore Mauritania[J]. Marine and Petroleum Geology, 2013, 48: 366-378. |
[35] | 杨金秀, 宋朋霖, 何巍巍, 等. 尼日尔三角洲前缘挤压带的古今BSRs分布特征[J]. 石油与天然气地质, 2019, 40(6): 1295-1307. |
[36] | LIN L F, LIU C S, BERNDT C, et al. Gas hydrate and fluid-related seismic indicators across the passive and active margins off SW Taiwan[M]//MIENERT J, BERNDT C, TRÉHU A M, et al. World atlas of submarine gas hydrates in continental margins. Cham: Springer International Publishing, 2022: 173-181. |
[37] | YAN C Z, SHI H S, WANG X J, et al. The occurrence, saturation and distribution of gas hydrate identified from three dimensional seismic data in the Lw3 area: the northern slope of the South China Sea[C]//Day 1 Mon, November 02, 2020. November 2-6, 2020. Kuala Lumpur, Malaysia. OTC, 2020. |
[38] | SATYAVANI N, SAIN K. Seismic insights into bottom simulating reflection (BSR) in the Krishna-Godavari Basin, eastern margin of India[J]. Marine Georesources & Geotechnology, 2015, 33(3): 191-201. |
[39] | FU C, YU X H, HE Y L, et al. Different initial density turbidite sediments with coarse grain injection and their corresponding flow pattern: additional insights from numerical simulation in a study case of South China Sea[J]. Petroleum Research, 2019, 4(1): 19-28. |
[40] | ZHONG S L, ZHANG J F, LUO J S, et al. Geological characteristics of mud volcanoes and diapirs in the northern continental margin of the South China Sea: implications for the mechanisms controlling the genesis of fluid leakage structures[J]. Geofluids, 2021: 5519264. |
[41] | SCHWALENBERG K, WOOD W, PECHER I, et al. Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand[J]. Marine Geology, 2010, 272(1/2/3/4): 89-98. |
[42] | RINCÓN-MARTÍNEZ D, RUGE S M, SILVA ARIAS A. Seismic analysis of the geological occurrence of gas hydrate in the Colombian Caribbean offshore[J]. Journal of South American Earth Sciences, 2022, 116: 103800. |
[43] | HOROZAL S, KIM G Y, CUKUR D, et al. Sedimentary and structural evolution of the eastern South Korea Plateau (ESKP), East Sea (Japan sea)[J]. Marine and Petroleum Geology, 2017, 85: 70-88. |
[44] | CRUTCHLEY G J, GORMAN A R, FOHRMANN M. Investigation of the role of gas hydrates in continental slope stability west of Fiordland, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2007, 50(4): 357-364. |
[45] | DAI J C, XU H B, SNYDER F, et al. Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deepwater gulf of Mexico[J]. The Leading Edge, 2004, 23(1): 60-66. |
[46] | WAGHORN K A, BÜNZ S, PLAZA-FAVEROLA A, et al. 3-D seismic investigation of a gas hydrate and fluid flow system on an active mid-ocean ridge; svyatogor ridge, fram strait[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2325-2341. |
[47] | LE A N, HUUSE M, REDFERN J, et al. Seismic characterization of a Bottom Simulating Reflection (BSR) and plumbing system of the Cameroon margin, offshore West Africa[J]. Marine and Petroleum Geology, 2015, 68: 629-647. |
[48] | SHANKAR U, OJHA M, GHOSH R. Assessment of gas hydrate reservoir from inverted seismic impedance and porosity in the northern Hikurangi margin, New Zealand[J]. Marine and Petroleum Geology, 2021, 123: 104751. |
[49] | LÜDMANN T, WONG H K. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk[J]. Marine Geology, 2003, 201(4): 269-286. |
[50] | NAKAJIMA T, KAKUWA Y, YASUDOMI Y, et al. Formation of pockmarks and submarine canyons associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea of Japan[J]. Journal of Asian Earth Sciences, 2014, 90: 228-242. |
[51] | LIU X L, FLEMINGS P B. Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 211-226. |
[52] | RODRIGO C, VERA E, GONZÁLEZ-FERNÁNDEZ A. Seismic analysis and distribution of a bottom-simulating reflector (BSR) in the Chilean margin offshore of Valdivia (40° S)[J]. Journal of South American Earth Sciences, 2009, 27(1): 1-10. |
[53] | MIENERT J, TRÉHU A M, BERNDT C, et al. Finding and using the world’s gas hydrates[M]//MIENERT J, BERNDT C, TRÉHU A M, et al. World atlas of submarine gas hydrates in continental margins. Cham: Springer International Publishing, 2022: 33-52. |
[54] | CARTWRIGHT J, WATTRUS N, RAUSCH D, et al. Recognition of an early Holocene polygonal fault system in lake superior: implications for the compaction of fine-grained sediments[J]. Geology, 2004, 32(3): 253. |
[55] | XIA Y, YANG J X, ZHANG W, et al. The different roles of fluid conduits for marine gas hydrate systems: a global review[J]. International Geology Review, 2024, 66(4): 855-883. |
[56] | HAN J H, LENG J G, WANG Y M. Characteristics and genesis of the polygonal fault system in southern slope of the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2016, 70: 163-174. |
[57] | SHOULDERS S J, CARTWRIGHT J, HUUSE M. Large-scale conical sandstone intrusions and polygonal fault systems in Tranche 6, Faroe-Shetland Basin[J]. Marine and Petroleum Geology, 2007, 24(3): 173-188. |
[58] | SUN Q L, WU S G, CARTWRIGHT J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315: 1-14. |
[59] | HUSTOFT S, MIENERT J, BÜNZ S, et al. High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology, 2007, 245(1/2/3/4): 89-106. |
[60] | ANDRESEN K J, HUUSE M. ‘bulls-eye’ pockmarks and polygonal faulting in the lower Congo Basin: relative timing and implications for fluid expulsion during shallow burial[J]. Marine Geology, 2011, 279(1/2/3/4): 111-127. |
[61] | GAY A, BERNDT C. Cessation/reactivation of polygonal faulting and effects on fluid flow in the Vøring Basin, Norwegian Margin[J]. Journal of the Geological Society, 2007, 164(1): 129-141. |
[62] | COOK A E, GOLDBERG D, KLEINBERG R L. Fracture-controlled gas hydrate systems in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9): 932-941. |
[63] | BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. |
[64] | BOSWELL R, FRYE M, SHELANDER D, et al. Architecture of gas-hydrate-bearing sands from walker ridge 313, green canyon 955, and alaminos canyon 21: northern deepwater gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 134-149. |
[65] | COLLETT T S, RIEDEL M, BOSWELL R, et al. Indian national gas hydrate program expedition 01 report[R]. US Geological Survey, 2015. |
[66] | SUESS E. Marine cold seeps[M]//TIMMIS K N. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 185-203. |
[67] | TALUKDER A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting[J]. Terra Nova, 2012, 24(4): 255-272. |
[68] | GULLAPALLI S, DEWANGAN P, KUMAR A, et al. Seismic evidence of free gas migration through the gas hydrate stability zone (GHSZ) and active methane seep in Krishna-Godavari offshore basin[J]. Marine and Petroleum Geology, 2019, 110: 695-705. |
[69] |
梁金强, 付少英, 陈芳, 等. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017, 28(5): 761-770.
DOI |
[70] | 尉建功, 杨胜雄, 梁金强, 等. 海洋钻探对甲烷渗漏的影响: 以南海北部天然气水合物钻探GMGS2-16站位为例[J]. 海洋地质与第四纪地质, 2018, 38(5): 63-70. |
[71] | BROTHERS D S, RUPPEL C, KLUESNER J W, et al. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin[J]. Geophysical Research Letters, 2014, 41(1): 96-101. |
[72] | KLUESNER J W, SILVER E A, BANGS N L, et al. High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa Rica[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(3): 519-539. |
[73] | CRUTCHLEY G J, KLAESCHEN D, PLANERT L, et al. The impact of fluid advection on gas hydrate stability: investigations at sites of methane seepage offshore costa rica[J]. Earth and Planetary Science Letters, 2014, 401: 95-109. |
[74] | SHEMIN G, DEEV E, VERNIKOVSKY V A, et al. Jurassic paleogeography and sedimentation in the northern West Siberia and South Kara Sea, Russian Arctic and Subarctic[J]. Marine and Petroleum Geology, 2019, 104: 286-312. |
[1] | 姬梦飞, 王吉亮, 王伟巍, 张杰城, 刘雪芹, 吴时国. 神狐海域细粒沉积物水合物储层的地球物理特征研究[J]. 地学前缘, 2025, 32(2): 126-139. |
[2] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[3] | 管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165. |
[4] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
[5] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[6] | 王秀娟, 韩磊, 刘俊州, 靳佳澎, 匡增桂, 周吉林. 天然气水合物与游离气共存的地球物理特征与识别[J]. 地学前缘, 2025, 32(2): 20-35. |
[7] | 吴能友, 李彦龙, 蒋宇静, 孙金声, 谢文卫, 胡高伟, 王韧, 于彦江, 王金堂, 陈强, 申凯翔, 孙志文, 陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望[J]. 地学前缘, 2025, 32(2): 216-229. |
[8] | 赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 2025, 32(2): 36-60. |
[9] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[10] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[11] | 邢会林, 王建超, 逄硕, 王瑞泽, 刘冬豫, 马子涵, 张愉玲, 谭玉阳. 俯冲带深海-岩石圈流体交换及其效应[J]. 地学前缘, 2022, 29(5): 246-254. |
[12] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[13] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[14] | 刘圣乾,刘晖,姜在兴,夏中源,庞守吉,马文贤. 青海南部冻土区天然气水合物成藏控制因素[J]. 地学前缘, 2017, 24(6): 242-253. |
[15] | 孙春岩,赵浩,贺会策,张志冰,竺玮煌,孙逊,尹文斌,凌帆. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘, 2017, 24(6): 225-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||