地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 36-60.DOI: 10.13745/j.esf.sf.2024.6.53
• 南海北部天然气水合物钻探发现与富集成藏 • 上一篇 下一篇
赖洪飞*(), 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安
收稿日期:
2024-08-25
修回日期:
2024-11-13
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*赖洪飞(1987—),男,博士,高级工程师,主要从事天然气水合物地球化学方面的研究。E-mail:laihfei@sina.com<
基金资助:
LAI Hongfei*(), KUANG Zenggui, FANG Yunxin, XU Chenlu, REN Jinfeng, LIANG Jinqiang, LU Jing’an
Received:
2024-08-25
Revised:
2024-11-13
Online:
2025-03-25
Published:
2025-03-25
摘要: 天然气水合物形成的物质来源对揭示其富集成藏机制至关重要。南海北部已钻探证实存在大量高饱和度天然气水合物矿藏,但其成矿烃类气体来源与成因机制仍未被系统阐明,制约着主力气源的判识和未来勘查部署。本文以南海北部琼东南和神狐海域典型的高饱和度水合物矿藏为研究对象,采用气体地球化学、沉积物有机地球化学、地质微生物组学、地震地质综合解释多手段综合研究方法,探讨了其烃类气体的来源和成因机制。结果显示南海北部水合物气体的成因类型具有多元化特点,原生型、次生型微生物气和热解成因煤型气、油型气均有发现,不同水合物矿藏中热解成因气体遭受了不同强度的微生物降解改造作用:神狐W11-17矿藏>神狐W18-19矿藏>琼东南GMGS5-W08矿藏。水合物气源层由浅部微生物气源层(20~85 ℃)和深部热解成因气源层(镜质体反射率Ro>0.5%)组成,目前已钻遇的300 mbsf以浅的微生物气源层产气潜力相对较低,但热解成因气源由于具备一定规模的烃源灶和正处于成熟阶段的煤系烃源岩等条件而表现出较高的产气潜力。深部热解成因烃源灶、中部常规油气藏、浅部微生物气源层和复合型输导通道(控洼断裂、气烟囱、管状渗漏、微裂缝等)构成了南海北部高饱和度水合物矿藏的气源供给体系,深部热解气的贡献极为关键,但大部分热解气运移经过微生物气源层(20~85 ℃)时遭受了微生物次生改造,最后转化为次生型微生物甲烷为水合物成矿供源。南海北部高饱和度水合物矿藏中的烃类气体具有3种成因:一是从深部热解成因烃源灶直接运移而来,即未降解热解气;二是深部来源热解成因烃类运移至微生物气源层后经微生物厌氧降解产甲烷过程生成,即次生型微生物气;三是浅部微生物气源层中的微生物利用原地沉积物有机质直接生成,即原生型微生物气。
中图分类号:
赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 2025, 32(2): 36-60.
LAI Hongfei, KUANG Zenggui, FANG Yunxin, XU Chenlu, REN Jinfeng, LIANG Jinqiang, LU Jing’an. Origin and genetic mechanism of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 36-60.
图1 南海北部高饱和度水合物矿藏分布位置图和测井响应特征(a据文献[36]修改;b据文献[45]修改;c据文献[10]修改)
Fig.1 Geographical maps and well logging characteristics of the highly concentrated gas hydrate accumulations in the northern South China Sea. (a) Modified after [36]; (b) Modified after [45]; (c) Modified after [10].
矿藏/气 体类型 | 井号 | 深度 (bsf)/m | 样品 类型 | 气体组分含量 | C1/ (C2+C3) | 碳同位素组成δ13C/‰ | 甲烷氢同位素 组成δD1/‰ | 数据 来源 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1含量/ % | C2含量/ % | C3含量/ 10-6 | C3+含量/ 10-6 | C1 | C2 | C3 | nC4 | nC5 | |||||||
W11-17 矿藏 | W17D | 250.2 | PCS | 98.45 | 1.47 | 768 | — | 64 | -59.7 | -32.3 | -18.5 | — | — | -170.5 | 本文 |
W17D | 259.35 | PCS | 98.89 | 0.80 | 3 045 | — | 89 | -60.8 | -32.6 | -18.2 | — | — | -164 | ||
W17D | 263.02 | PCS | 98.86 | 0.84 | 2 961 | — | 87 | -56.7 | -32.8 | -18.3 | — | — | -165.2 | ||
W17D | 257.00 | PCS | 98.94 | 0.77 | 2 864 | — | 93 | -58.7 | -32.7 | -18.2 | — | — | -164.5 | ||
SH-W04 | 208.1 | PCS | 99.35 | 0.51 | 1 337 | 78 | 153 | -66.2 | -33.2 | -19.7 | -21.2 | — | -176.1 | ||
SH-W04 | 210.4 | PCS | 99.51 | 0.44 | 360 | 35 | 205 | -65.4 | -33.3 | -19.4 | — | — | -177.5 | ||
SH-W02 | 259.1 | PCS | 99.48 | 0.43 | 356 | 76 | 201 | -65.2 | -33.6 | -22.3 | -23.1 | -25.7 | -178.2 | ||
SH-W02 | 266.8 | PCS | 99.52 | 0.39 | 670 | 241 | 212 | -66.0 | -33.7 | -21.7 | -23.2 | -25.3 | -175.1 | ||
SC3 | 135.25 | PCS | 99.7 | 0.25 | 10 | 0 | 399 | -66.4 | — | — | — | — | -189.5 | [ | |
149.34 | VG | 99.6 | 0.31 | 90 | 131 | 311 | -64.9 | — | — | — | — | -185.4 | |||
153.71 | VG | 99.3 | 0.34 | 1 784 | 1 211 | 193 | -65.2 | — | — | — | — | -185 | |||
161.10 | PCS | 99.6 | 0.42 | 74 | 0 | 231 | -65.4 | — | — | — | — | -181.3 | |||
161.20 | VG | 99.6 | 0.39 | 72 | 0 | 252 | -64.7 | — | — | — | — | -185.6 | |||
170.34 | VG | 99.5 | 0.5 | 88 | 0 | 195 | -65.4 | — | — | — | — | -162.2 | |||
174.41 | VG | 99.4 | 0.55 | 88 | 0 | 179 | -64.6 | — | — | — | — | -184.6 | |||
177.40 | PCS | 99.4 | 0.61 | 82 | 0 | 161 | -64.6 | — | — | — | — | -185.4 | |||
199.98 | VG | 99.5 | 0.5 | 132 | 0 | 194 | -64.6 | — | — | — | — | -181.2 | |||
SH-W02 | 209.4~209.62 | PCS | 99.45 | 0.5 | 211 | 33 | 191 | -66.5 | -32.2 | -18.2 | — | — | n.g. | [ | |
SC3 | 136.57 | HG | 99.66 | 0.31 | 20 | 0 | 317 | -65.2 | — | — | — | — | -191.3 | [ | |
SH-W04 | 197.5 | PCS | 99.07 | 0.66 | 2 408 | 308 | 110 | -66.0 | -32.8 | -20.0 | -20.9 | — | -175.6 | [ | |
W18-19 矿藏 | SC1 | 155.48 | HG | 99.6 | 0.098 | 1 780 | 780 | 360 | -47.4 | — | — | — | — | -172.6 | [ |
162.16 | HG | 99.2 | 0.647 | 1 090 | 750 | 131 | -47.1 | — | — | — | — | -174.1 | |||
162.90 | HG | 99.1 | 0.674 | 1 090 | 850 | 126 | -47.7 | — | — | — | — | -177.7 | |||
170.00 | HG | 98.9 | 0.756 | 2 160 | 950 | 102 | -47.8 | — | — | — | — | -173.2 | |||
SC1 | 155.24 | PCS | 98.0 | 0.09 | 1 436 | 447 | 422 | -47.4 | — | — | — | — | -172.6 | [ | |
SC1 | 162.94 | VG | 98.5 | 1.03 | 3 437 | 837 | 72 | -46.4 | — | — | — | — | -164.7 | ||
SC1 | 169.19 | VG | 98.6 | 1.11 | 1 495 | 570 | 78 | -47.6 | — | — | — | — | -170 | ||
SC1 | 170.00 | PCS | 98.9 | 0.78 | 1 976 | 861 | 102 | -47.8 | — | — | — | — | -173.2 | ||
SC2 | 149.26 | PCS | 98.7 | 0.53 | 686 | 468 | 164 | -46.4 | — | — | — | — | -174.5 | ||
SC2 | 149.61 | PCS | 99.2 | 0.7 | 371 | 181 | 134 | -47.3 | — | — | — | — | -177.4 | ||
SC2 | 153.69 | VG | 98.4 | 1.18 | 3 827 | 504 | 63 | -46.2 | — | — | — | — | -185.0 | ||
SC2 | 157.41 | PCS | 98.5 | 0.79 | 5 281 | 1 585 | 75 | -47.2 | — | — | — | — | -171.3 | ||
SC2 | 165.91 | VG | 98.1 | 1.82 | 847 | 110 | 52 | -45.8 | — | — | — | — | -170.1 | ||
SC2 | 170.26 | PCS | 98.4 | 1.31 | 2 505 | 778 | 63 | -46.8 | — | — | — | — | -182.5 | ||
SC1 | 155.35~155.48 | HG | 99.76 | 0.17 | 666 | 103 | 426 | -49.5 | -27.8 | -19.4 | -24.7 | — | -165.4 | [ | |
SC1 | 160.02~160.13 | HG | 99.36 | 0.61 | 257 | 0 | 156 | -48.9 | -26.9 | -16.5 | — | — | -179.6 | ||
SC1 | 160.58~160.76 | HG | 99.32 | 0.43 | 1 124 | 300 | 183 | -49.1 | -26.1 | -19.2 | -26.4 | — | -163.3 | ||
SC1 | 161.43~161.63 | HG | 98.55 | 1.15 | 2 278 | 574 | 72 | -49.5 | -25.2 | -18.7 | — | — | -174.5 | ||
SC1 | 163.25~163.46 | HG | 99.10 | 0.79 | 780 | 222 | 115 | -50.2 | -25.7 | -18.3 | — | — | -169.0 | ||
SC2 | 158.69~158.84 | HG | 99.22 | 0.68 | 202 | 68 | 142 | -47.4 | -22.7 | -17.4 | — | — | -172.5 | ||
SC2 | 169.85~170.08 | HG | 98.60 | 1.37 | 238 | 61 | 71 | -47.5 | -24.0 | -17.0 | — | — | -178.7 | ||
SC1 | 155.48 | HG | 99.63 | 0.22 | 1 078 | 161 | 302 | -47.0 | -30.5 | -18.3 | -16.4 | — | -190.7 | [ | |
SC1 | 160.76 | HG | 99.07 | 0.76 | 640 | 145 | 120 | -49.2 | -28.9 | -18.6 | -18.5 | — | -195.0 | ||
SC1 | 161.63 | HG | 98.17 | 1.52 | 1 996 | 542 | 57 | -47.8 | -28.9 | -17.9 | -15.2 | — | -196.6 | ||
SC1 | 162.16 | HG | 98.69 | 1.17 | 612 | 145 | 80 | -47.6 | -27.6 | -17.2 | -18.2 | — | -191.2 | ||
SC1 | 163.46 | HG | 98.60 | 1.25 | 618 | 254 | 75 | -48.1 | -28.7 | -18.3 | -20.4 | — | -191.9 | ||
SC2 | 144.52 | HG | 99.60 | 0.25 | 1 130 | 132 | 276 | -46.2 | -28.6 | -18.1 | -17.4 | — | -191.9 | ||
SC2 | 158.84 | HG | 98.22 | 1.58 | 570 | 74 | 60 | -47.3 | -28.3 | -18.0 | — | — | -197.9 | ||
SC2 | 170.08 | HG | 98.25 | 1.64 | 569 | 104 | 58 | -46.9 | -27.7 | -17.3 | -17.2 | — | -193.5 | ||
GMGS- W08 矿藏 | W08C | 8.00 | HG | 97.69 | 2.05 | 500 | 231 | 47 | -59.5 | -26.0 | -22.4 | — | — | -187 | [ |
W08B | 32.88 | PCS | 94.94 | 4.23 | 5 800 | 2 172 | 20 | -54.4 | -25.5 | -22.9 | — | — | -185 | ||
W08B | 62.93 | HG | 81.21 | 12.88 | 45 800 | 12 471 | 5 | -56.3 | -26.9 | -22.7 | — | — | -176 | ||
W08B | 79.00 | PCS | 95.75 | 3.69 | 3 900 | 1 681 | 24 | -58.6 | -25.1 | -21.6 | — | — | -170 | ||
W08B | 80.90 | PCS | 95.73 | 3.68 | 3 600 | 1 758 | 24 | -48.7 | -22.4 | -20.2 | — | — | — | ||
W08B | 112.30 | PCS | 96.46 | 2.99 | 3 300 | 1 587 | 29 | -53.8 | -23.3 | -20.7 | — | — | -175 | ||
W08C | 145.65 | PCS | 83.49 | 11.61 | 39 300 | 9 417 | 5 | -49.3 | -27.5 | -23.0 | — | — | — | ||
W08C | 148.40 | HG | 79.16 | 14.4 | 51 500 | 12 416 | 4 | -50.4 | -26.5 | -22.8 | — | — | — | ||
W08C | 158.00 | PCS | 84.17 | 10.99 | 39 000 | 9 123 | 6 | -50.4 | -26.9 | -22.2 | — | — | -183 | ||
W08C | 187.10 | PCS | 92.82 | 4.56 | 20 700 | 4 932 | 14 | -50.4 | -26.7 | -23.2 | — | — | -180 | ||
W08B | 17.07 | HG | 96.95 | 2.6 | 3 064 | n.g. | 33 | -57.6 | -25.1 | -20.6 | -21.5 | — | -169 | ||
W08B | 60.00 | HG | 96.07 | 3.1 | 4 977 | n.g. | 27 | -60.9 | -25.9 | -21.4 | -22.4 | — | -181 | ||
W08B | 63.58 | HG | 89.45 | 7.77 | 20 730 | n.g. | 9 | -57.3 | -26.3 | -21.9 | — | — | -179 | ||
W08B | 63.18 | HG | 96.20 | 3.3 | 3 897 | n.g. | 26 | -54.6 | -22.0 | — | — | — | -178 | ||
W08B | 69.35 | HG | 91.63 | 5.86 | 20 333 | n.g. | 12 | -60.5 | -26.2 | -19.6 | — | — | -183 | ||
生物 成因气 | SH-W20A | 65.64 | VG | 96 | 0.1 | 478 | 237 | 2 009 | -74.9 | -33.8 | -17.4 | — | — | -174 | [ |
SH-W20A | 90.34 | VG | 97 | 0.1 | 534 | 352 | 1 817 | -70.2 | -33.0 | -17.0 | -23.3 | — | -170 | ||
GMGS5-W01 | 49.27 | PCS | 99.59 | 0.29 | 1 245 | 0 | 255 | -80.6 | -29.8 | -23.1 | — | — | -187 | [ | |
GMGS5-W01 | 125.80 | PCS | 99.81 | 0.15 | 419 | 0 | 525 | -79.0 | -36.1 | -24.1 | — | — | -180 | ||
GMGS6-W03 | 27.71 | VG | 99.32 | 0.06 | — | 0 | 1 655 | -77.6 | -28.1 | — | — | — | -178 | ||
热解 成因气 | LW3-1气藏 | 3 144.5 | n.g. | n.g. | n.g. | n.g. | 12 | -36.6 | -29.1 | -27.4 | -27.0 | -26.6 | -158.4 | [ | |
LW3-1气藏 | 3 189.5 | n.g. | n.g. | n.g. | n.g. | 13 | -36.8 | -28.9 | -27.5 | -27.4 | -27.2 | -155.8 | |||
LW3-1气藏 | 3 499.5 | n.g. | n.g. | n.g. | n.g. | 12 | -36.6 | -29.6 | -29.1 | -28.2 | -26.2 | -175.6 | |||
L18-1气藏 | 2 819.9~2 846.7 | DST | 93.17 | 6.15 | n.g. | n.g. | 15 | -40.5 | -25.2 | -23.8 | -22.7 | — | — | [ | |
L18-1气藏 | 2 819.9~2 846.7 | DST | n.g. | n.g. | n.g. | n.g. | 15 | -40.4 | -25.2 | -23.8 | — | — | — | ||
L18-1气藏 | 2 819.9~2 846.7 | DST | n.g. | n.g. | n.g. | n.g. | 26 | -42.8 | -26.2 | -25.6 | — | — | — |
表1 南海北部典型天然气水合物分解气、生物成因气和热解成因气的组分组成和稳定同位素特征
Table 1 Molecular composition and isotopic characteristics of representative hydrate gas, microbial gas, and thermogenic gas in the northern South China Sea
矿藏/气 体类型 | 井号 | 深度 (bsf)/m | 样品 类型 | 气体组分含量 | C1/ (C2+C3) | 碳同位素组成δ13C/‰ | 甲烷氢同位素 组成δD1/‰ | 数据 来源 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1含量/ % | C2含量/ % | C3含量/ 10-6 | C3+含量/ 10-6 | C1 | C2 | C3 | nC4 | nC5 | |||||||
W11-17 矿藏 | W17D | 250.2 | PCS | 98.45 | 1.47 | 768 | — | 64 | -59.7 | -32.3 | -18.5 | — | — | -170.5 | 本文 |
W17D | 259.35 | PCS | 98.89 | 0.80 | 3 045 | — | 89 | -60.8 | -32.6 | -18.2 | — | — | -164 | ||
W17D | 263.02 | PCS | 98.86 | 0.84 | 2 961 | — | 87 | -56.7 | -32.8 | -18.3 | — | — | -165.2 | ||
W17D | 257.00 | PCS | 98.94 | 0.77 | 2 864 | — | 93 | -58.7 | -32.7 | -18.2 | — | — | -164.5 | ||
SH-W04 | 208.1 | PCS | 99.35 | 0.51 | 1 337 | 78 | 153 | -66.2 | -33.2 | -19.7 | -21.2 | — | -176.1 | ||
SH-W04 | 210.4 | PCS | 99.51 | 0.44 | 360 | 35 | 205 | -65.4 | -33.3 | -19.4 | — | — | -177.5 | ||
SH-W02 | 259.1 | PCS | 99.48 | 0.43 | 356 | 76 | 201 | -65.2 | -33.6 | -22.3 | -23.1 | -25.7 | -178.2 | ||
SH-W02 | 266.8 | PCS | 99.52 | 0.39 | 670 | 241 | 212 | -66.0 | -33.7 | -21.7 | -23.2 | -25.3 | -175.1 | ||
SC3 | 135.25 | PCS | 99.7 | 0.25 | 10 | 0 | 399 | -66.4 | — | — | — | — | -189.5 | [ | |
149.34 | VG | 99.6 | 0.31 | 90 | 131 | 311 | -64.9 | — | — | — | — | -185.4 | |||
153.71 | VG | 99.3 | 0.34 | 1 784 | 1 211 | 193 | -65.2 | — | — | — | — | -185 | |||
161.10 | PCS | 99.6 | 0.42 | 74 | 0 | 231 | -65.4 | — | — | — | — | -181.3 | |||
161.20 | VG | 99.6 | 0.39 | 72 | 0 | 252 | -64.7 | — | — | — | — | -185.6 | |||
170.34 | VG | 99.5 | 0.5 | 88 | 0 | 195 | -65.4 | — | — | — | — | -162.2 | |||
174.41 | VG | 99.4 | 0.55 | 88 | 0 | 179 | -64.6 | — | — | — | — | -184.6 | |||
177.40 | PCS | 99.4 | 0.61 | 82 | 0 | 161 | -64.6 | — | — | — | — | -185.4 | |||
199.98 | VG | 99.5 | 0.5 | 132 | 0 | 194 | -64.6 | — | — | — | — | -181.2 | |||
SH-W02 | 209.4~209.62 | PCS | 99.45 | 0.5 | 211 | 33 | 191 | -66.5 | -32.2 | -18.2 | — | — | n.g. | [ | |
SC3 | 136.57 | HG | 99.66 | 0.31 | 20 | 0 | 317 | -65.2 | — | — | — | — | -191.3 | [ | |
SH-W04 | 197.5 | PCS | 99.07 | 0.66 | 2 408 | 308 | 110 | -66.0 | -32.8 | -20.0 | -20.9 | — | -175.6 | [ | |
W18-19 矿藏 | SC1 | 155.48 | HG | 99.6 | 0.098 | 1 780 | 780 | 360 | -47.4 | — | — | — | — | -172.6 | [ |
162.16 | HG | 99.2 | 0.647 | 1 090 | 750 | 131 | -47.1 | — | — | — | — | -174.1 | |||
162.90 | HG | 99.1 | 0.674 | 1 090 | 850 | 126 | -47.7 | — | — | — | — | -177.7 | |||
170.00 | HG | 98.9 | 0.756 | 2 160 | 950 | 102 | -47.8 | — | — | — | — | -173.2 | |||
SC1 | 155.24 | PCS | 98.0 | 0.09 | 1 436 | 447 | 422 | -47.4 | — | — | — | — | -172.6 | [ | |
SC1 | 162.94 | VG | 98.5 | 1.03 | 3 437 | 837 | 72 | -46.4 | — | — | — | — | -164.7 | ||
SC1 | 169.19 | VG | 98.6 | 1.11 | 1 495 | 570 | 78 | -47.6 | — | — | — | — | -170 | ||
SC1 | 170.00 | PCS | 98.9 | 0.78 | 1 976 | 861 | 102 | -47.8 | — | — | — | — | -173.2 | ||
SC2 | 149.26 | PCS | 98.7 | 0.53 | 686 | 468 | 164 | -46.4 | — | — | — | — | -174.5 | ||
SC2 | 149.61 | PCS | 99.2 | 0.7 | 371 | 181 | 134 | -47.3 | — | — | — | — | -177.4 | ||
SC2 | 153.69 | VG | 98.4 | 1.18 | 3 827 | 504 | 63 | -46.2 | — | — | — | — | -185.0 | ||
SC2 | 157.41 | PCS | 98.5 | 0.79 | 5 281 | 1 585 | 75 | -47.2 | — | — | — | — | -171.3 | ||
SC2 | 165.91 | VG | 98.1 | 1.82 | 847 | 110 | 52 | -45.8 | — | — | — | — | -170.1 | ||
SC2 | 170.26 | PCS | 98.4 | 1.31 | 2 505 | 778 | 63 | -46.8 | — | — | — | — | -182.5 | ||
SC1 | 155.35~155.48 | HG | 99.76 | 0.17 | 666 | 103 | 426 | -49.5 | -27.8 | -19.4 | -24.7 | — | -165.4 | [ | |
SC1 | 160.02~160.13 | HG | 99.36 | 0.61 | 257 | 0 | 156 | -48.9 | -26.9 | -16.5 | — | — | -179.6 | ||
SC1 | 160.58~160.76 | HG | 99.32 | 0.43 | 1 124 | 300 | 183 | -49.1 | -26.1 | -19.2 | -26.4 | — | -163.3 | ||
SC1 | 161.43~161.63 | HG | 98.55 | 1.15 | 2 278 | 574 | 72 | -49.5 | -25.2 | -18.7 | — | — | -174.5 | ||
SC1 | 163.25~163.46 | HG | 99.10 | 0.79 | 780 | 222 | 115 | -50.2 | -25.7 | -18.3 | — | — | -169.0 | ||
SC2 | 158.69~158.84 | HG | 99.22 | 0.68 | 202 | 68 | 142 | -47.4 | -22.7 | -17.4 | — | — | -172.5 | ||
SC2 | 169.85~170.08 | HG | 98.60 | 1.37 | 238 | 61 | 71 | -47.5 | -24.0 | -17.0 | — | — | -178.7 | ||
SC1 | 155.48 | HG | 99.63 | 0.22 | 1 078 | 161 | 302 | -47.0 | -30.5 | -18.3 | -16.4 | — | -190.7 | [ | |
SC1 | 160.76 | HG | 99.07 | 0.76 | 640 | 145 | 120 | -49.2 | -28.9 | -18.6 | -18.5 | — | -195.0 | ||
SC1 | 161.63 | HG | 98.17 | 1.52 | 1 996 | 542 | 57 | -47.8 | -28.9 | -17.9 | -15.2 | — | -196.6 | ||
SC1 | 162.16 | HG | 98.69 | 1.17 | 612 | 145 | 80 | -47.6 | -27.6 | -17.2 | -18.2 | — | -191.2 | ||
SC1 | 163.46 | HG | 98.60 | 1.25 | 618 | 254 | 75 | -48.1 | -28.7 | -18.3 | -20.4 | — | -191.9 | ||
SC2 | 144.52 | HG | 99.60 | 0.25 | 1 130 | 132 | 276 | -46.2 | -28.6 | -18.1 | -17.4 | — | -191.9 | ||
SC2 | 158.84 | HG | 98.22 | 1.58 | 570 | 74 | 60 | -47.3 | -28.3 | -18.0 | — | — | -197.9 | ||
SC2 | 170.08 | HG | 98.25 | 1.64 | 569 | 104 | 58 | -46.9 | -27.7 | -17.3 | -17.2 | — | -193.5 | ||
GMGS- W08 矿藏 | W08C | 8.00 | HG | 97.69 | 2.05 | 500 | 231 | 47 | -59.5 | -26.0 | -22.4 | — | — | -187 | [ |
W08B | 32.88 | PCS | 94.94 | 4.23 | 5 800 | 2 172 | 20 | -54.4 | -25.5 | -22.9 | — | — | -185 | ||
W08B | 62.93 | HG | 81.21 | 12.88 | 45 800 | 12 471 | 5 | -56.3 | -26.9 | -22.7 | — | — | -176 | ||
W08B | 79.00 | PCS | 95.75 | 3.69 | 3 900 | 1 681 | 24 | -58.6 | -25.1 | -21.6 | — | — | -170 | ||
W08B | 80.90 | PCS | 95.73 | 3.68 | 3 600 | 1 758 | 24 | -48.7 | -22.4 | -20.2 | — | — | — | ||
W08B | 112.30 | PCS | 96.46 | 2.99 | 3 300 | 1 587 | 29 | -53.8 | -23.3 | -20.7 | — | — | -175 | ||
W08C | 145.65 | PCS | 83.49 | 11.61 | 39 300 | 9 417 | 5 | -49.3 | -27.5 | -23.0 | — | — | — | ||
W08C | 148.40 | HG | 79.16 | 14.4 | 51 500 | 12 416 | 4 | -50.4 | -26.5 | -22.8 | — | — | — | ||
W08C | 158.00 | PCS | 84.17 | 10.99 | 39 000 | 9 123 | 6 | -50.4 | -26.9 | -22.2 | — | — | -183 | ||
W08C | 187.10 | PCS | 92.82 | 4.56 | 20 700 | 4 932 | 14 | -50.4 | -26.7 | -23.2 | — | — | -180 | ||
W08B | 17.07 | HG | 96.95 | 2.6 | 3 064 | n.g. | 33 | -57.6 | -25.1 | -20.6 | -21.5 | — | -169 | ||
W08B | 60.00 | HG | 96.07 | 3.1 | 4 977 | n.g. | 27 | -60.9 | -25.9 | -21.4 | -22.4 | — | -181 | ||
W08B | 63.58 | HG | 89.45 | 7.77 | 20 730 | n.g. | 9 | -57.3 | -26.3 | -21.9 | — | — | -179 | ||
W08B | 63.18 | HG | 96.20 | 3.3 | 3 897 | n.g. | 26 | -54.6 | -22.0 | — | — | — | -178 | ||
W08B | 69.35 | HG | 91.63 | 5.86 | 20 333 | n.g. | 12 | -60.5 | -26.2 | -19.6 | — | — | -183 | ||
生物 成因气 | SH-W20A | 65.64 | VG | 96 | 0.1 | 478 | 237 | 2 009 | -74.9 | -33.8 | -17.4 | — | — | -174 | [ |
SH-W20A | 90.34 | VG | 97 | 0.1 | 534 | 352 | 1 817 | -70.2 | -33.0 | -17.0 | -23.3 | — | -170 | ||
GMGS5-W01 | 49.27 | PCS | 99.59 | 0.29 | 1 245 | 0 | 255 | -80.6 | -29.8 | -23.1 | — | — | -187 | [ | |
GMGS5-W01 | 125.80 | PCS | 99.81 | 0.15 | 419 | 0 | 525 | -79.0 | -36.1 | -24.1 | — | — | -180 | ||
GMGS6-W03 | 27.71 | VG | 99.32 | 0.06 | — | 0 | 1 655 | -77.6 | -28.1 | — | — | — | -178 | ||
热解 成因气 | LW3-1气藏 | 3 144.5 | n.g. | n.g. | n.g. | n.g. | 12 | -36.6 | -29.1 | -27.4 | -27.0 | -26.6 | -158.4 | [ | |
LW3-1气藏 | 3 189.5 | n.g. | n.g. | n.g. | n.g. | 13 | -36.8 | -28.9 | -27.5 | -27.4 | -27.2 | -155.8 | |||
LW3-1气藏 | 3 499.5 | n.g. | n.g. | n.g. | n.g. | 12 | -36.6 | -29.6 | -29.1 | -28.2 | -26.2 | -175.6 | |||
L18-1气藏 | 2 819.9~2 846.7 | DST | 93.17 | 6.15 | n.g. | n.g. | 15 | -40.5 | -25.2 | -23.8 | -22.7 | — | — | [ | |
L18-1气藏 | 2 819.9~2 846.7 | DST | n.g. | n.g. | n.g. | n.g. | 15 | -40.4 | -25.2 | -23.8 | — | — | — | ||
L18-1气藏 | 2 819.9~2 846.7 | DST | n.g. | n.g. | n.g. | n.g. | 26 | -42.8 | -26.2 | -25.6 | — | — | — |
水合物 矿藏 | 站位 | 深度(bsf)/ m | TOC 含量/% | 数据来源 文献 | 水合物 矿藏 | 站位 | 深度(bsf)/ m | TOC 含量/% | 数据来源 文献 |
---|---|---|---|---|---|---|---|---|---|
神狐 W11-17 矿藏 | W17D | 1.58 | 0.88 | 本文 | 神狐 W18-19 矿藏 | SC2 | 113.17 | 0.24 | [ |
W17D | 4.76 | 0.75 | SC2 | 115.19 | 0.3 | ||||
W17D | 12.73 | 0.66 | SC2 | 115.35 | 0.24 | ||||
W17D | 17.87 | 0.57 | SC2 | 115.42 | 0.27 | ||||
W17D | 19.73 | 0.39 | SC2 | 118.72 | 0.18 | ||||
W17D | 20.67 | 0.39 | SC2 | 120.175 | 0.21 | ||||
W17D | 191.27 | 0.15 | SC2 | 120.92 | 0.18 | ||||
W17D | 228.96 | 0.16 | SC2 | 121.59 | 0.21 | ||||
W17D | 250.29 | 0.22 | SC2 | 125.39 | 0.12 | ||||
W17D | 262.83 | 0.15 | SC2 | 128.065 | 0.13 | ||||
SC3 | 49.71 | 0.17 | SC2 | 130.44 | 0.14 | ||||
SC3 | 93.15 | 0.19 | SC2 | 130.06 | 0.13 | ||||
SC3 | 132.79 | 0.21 | SC2 | 132.86 | 0.18 | ||||
SC3 | 147.19 | 0.24 | SC2 | 136.235 | 0.14 | ||||
SC3 | 171.97 | 0.22 | SC2 | 136.29 | 0.15 | ||||
SC3 | 206.97 | 0.27 | SC2 | 135.74 | 0.11 | ||||
SC3 | 298.25 | 0.25 | SC2 | 137.83 | 0.14 | ||||
琼东南 GMGS5- W08 矿藏 | QDN-W08 | 3.02 | 0.46 | [ | SC2 | 140.71 | 0.16 | ||
QDN-W08 | 8.95 | 0.56 | SC2 | 143.17 | 0.17 | ||||
QDN-W08 | 18.06 | 0.66 | SC2 | 149.94 | 0.18 | ||||
QDN-W08 | 27.205 | 0.47 | SC2 | 152.64 | 0.18 | ||||
QDN-W08 | 53.015 | 0.47 | SC2 | 153.69 | 0.16 | ||||
QDN-W08 | 54.65 | 0.41 | SC2 | 158.23 | 0.16 | ||||
QDN-W08 | 63.25 | 0.43 | SC2 | 161.06 | 0.15 | ||||
QDN-W08 | 81.50 | 0.29 | SC2 | 163.34 | 0.15 | ||||
QDN-W08 | 115.225 | 0.35 | SC2 | 164.39 | 0.13 | ||||
QDN-W08 | 168.1 | 0.33 | SC2 | 168.63 | 0.18 | ||||
神狐 W18-19 矿藏 | SC2 | 39.46 | 0.89 | 本文 | SC2 | 169.83 | 0.17 | ||
SC2 | 47.08 | 0.73 | SC2 | 170.51 | 0.17 | ||||
SC2 | 82.72 | 0.44 | SC2 | 177.56 | 0.17 | ||||
SC2 | 84.67 | 0.45 | SC2 | 179.85 | 0.18 | ||||
SC2 | 95.09 | 0.55 | SC2 | 180.25 | 0.19 | ||||
SC2 | 98.88 | 0.47 | SC2 | 185.39 | 0.23 | ||||
SC2 | 101.54 | 0.37 | SC2 | 185.44 | 0.18 | ||||
SC2 | 101.61 | 0.37 | SC2 | 188.32 | 0.18 | ||||
SC2 | 105.30 | 0.29 | SC2 | 189.10 | 0.17 | ||||
SC2 | 108.30 | 0.25 | SC2 | 189.56 | 0.19 | ||||
SC2 | 110.23 | 0.19 | [ | SC2 | 189.62 | 0.21 | |||
SC2 | 110.57 | 0.26 | SC2 | 190.18 | 0.21 | ||||
SC2 | 110.65 | 0.21 |
表2 南海北部不同水合物矿藏区沉积物的总有机碳含量
Table 2 Total organic carbon (TOC) contents of sediment samples within the hydrate-bearing zones in the northern South China Sea.
水合物 矿藏 | 站位 | 深度(bsf)/ m | TOC 含量/% | 数据来源 文献 | 水合物 矿藏 | 站位 | 深度(bsf)/ m | TOC 含量/% | 数据来源 文献 |
---|---|---|---|---|---|---|---|---|---|
神狐 W11-17 矿藏 | W17D | 1.58 | 0.88 | 本文 | 神狐 W18-19 矿藏 | SC2 | 113.17 | 0.24 | [ |
W17D | 4.76 | 0.75 | SC2 | 115.19 | 0.3 | ||||
W17D | 12.73 | 0.66 | SC2 | 115.35 | 0.24 | ||||
W17D | 17.87 | 0.57 | SC2 | 115.42 | 0.27 | ||||
W17D | 19.73 | 0.39 | SC2 | 118.72 | 0.18 | ||||
W17D | 20.67 | 0.39 | SC2 | 120.175 | 0.21 | ||||
W17D | 191.27 | 0.15 | SC2 | 120.92 | 0.18 | ||||
W17D | 228.96 | 0.16 | SC2 | 121.59 | 0.21 | ||||
W17D | 250.29 | 0.22 | SC2 | 125.39 | 0.12 | ||||
W17D | 262.83 | 0.15 | SC2 | 128.065 | 0.13 | ||||
SC3 | 49.71 | 0.17 | SC2 | 130.44 | 0.14 | ||||
SC3 | 93.15 | 0.19 | SC2 | 130.06 | 0.13 | ||||
SC3 | 132.79 | 0.21 | SC2 | 132.86 | 0.18 | ||||
SC3 | 147.19 | 0.24 | SC2 | 136.235 | 0.14 | ||||
SC3 | 171.97 | 0.22 | SC2 | 136.29 | 0.15 | ||||
SC3 | 206.97 | 0.27 | SC2 | 135.74 | 0.11 | ||||
SC3 | 298.25 | 0.25 | SC2 | 137.83 | 0.14 | ||||
琼东南 GMGS5- W08 矿藏 | QDN-W08 | 3.02 | 0.46 | [ | SC2 | 140.71 | 0.16 | ||
QDN-W08 | 8.95 | 0.56 | SC2 | 143.17 | 0.17 | ||||
QDN-W08 | 18.06 | 0.66 | SC2 | 149.94 | 0.18 | ||||
QDN-W08 | 27.205 | 0.47 | SC2 | 152.64 | 0.18 | ||||
QDN-W08 | 53.015 | 0.47 | SC2 | 153.69 | 0.16 | ||||
QDN-W08 | 54.65 | 0.41 | SC2 | 158.23 | 0.16 | ||||
QDN-W08 | 63.25 | 0.43 | SC2 | 161.06 | 0.15 | ||||
QDN-W08 | 81.50 | 0.29 | SC2 | 163.34 | 0.15 | ||||
QDN-W08 | 115.225 | 0.35 | SC2 | 164.39 | 0.13 | ||||
QDN-W08 | 168.1 | 0.33 | SC2 | 168.63 | 0.18 | ||||
神狐 W18-19 矿藏 | SC2 | 39.46 | 0.89 | 本文 | SC2 | 169.83 | 0.17 | ||
SC2 | 47.08 | 0.73 | SC2 | 170.51 | 0.17 | ||||
SC2 | 82.72 | 0.44 | SC2 | 177.56 | 0.17 | ||||
SC2 | 84.67 | 0.45 | SC2 | 179.85 | 0.18 | ||||
SC2 | 95.09 | 0.55 | SC2 | 180.25 | 0.19 | ||||
SC2 | 98.88 | 0.47 | SC2 | 185.39 | 0.23 | ||||
SC2 | 101.54 | 0.37 | SC2 | 185.44 | 0.18 | ||||
SC2 | 101.61 | 0.37 | SC2 | 188.32 | 0.18 | ||||
SC2 | 105.30 | 0.29 | SC2 | 189.10 | 0.17 | ||||
SC2 | 108.30 | 0.25 | SC2 | 189.56 | 0.19 | ||||
SC2 | 110.23 | 0.19 | [ | SC2 | 189.62 | 0.21 | |||
SC2 | 110.57 | 0.26 | SC2 | 190.18 | 0.21 | ||||
SC2 | 110.65 | 0.21 |
水合物 矿藏 | 钻探 站位 | 深度(bsf)/ m | 泥质 含量/% | 氯仿沥青“A” 含量/(mg·g-1) | 饱和烃 含量/% | 芳烃 含量/% | 非烃 含量/% | 沥青质 含量/% | 数据来源 文献 |
---|---|---|---|---|---|---|---|---|---|
神狐W11-17 矿藏 | W17D | 229.02 | 22.77 | 0.09 | 13.33 | 13.94 | 18.79 | 53.94 | 本文 |
W17D | 250.36 | 25.26 | 0.07 | 17.24 | 22.41 | 13.79 | 46.55 | ||
神狐W18-19 矿藏 | SC2 | 149.46~152.46 | 18.74 | 0.20 | 4.71 | 0.67 | 7.40 | 87.22 | 本文 |
SC2 | 158.3~163.34 | 19.31 | 0.24 | 8.55 | 1.14 | 8.55 | 81.77 | ||
SC2 | 168.59~170.55 | 22.78 | 0.15 | 24.75 | 1.98 | 11.88 | 61.39 | ||
琼东南GMGS5-W08 矿藏 | GMGS-W08 | 81.45~81.55 | 19.81 | 0.26 | 2.65 | 2.65 | 9.93 | 84.77 | [ |
GMGS-W08 | 115.16~115.29 | 28.15 | 0.31 | 3.29 | 3.29 | 15.13 | 78.29 |
表3 南海北部水合物储层沉积物可溶有机质含量及其族组分组成
Table 3 Content of soluble organic matter and their composition of hydrate-bearing sediments in the northern South China Sea
水合物 矿藏 | 钻探 站位 | 深度(bsf)/ m | 泥质 含量/% | 氯仿沥青“A” 含量/(mg·g-1) | 饱和烃 含量/% | 芳烃 含量/% | 非烃 含量/% | 沥青质 含量/% | 数据来源 文献 |
---|---|---|---|---|---|---|---|---|---|
神狐W11-17 矿藏 | W17D | 229.02 | 22.77 | 0.09 | 13.33 | 13.94 | 18.79 | 53.94 | 本文 |
W17D | 250.36 | 25.26 | 0.07 | 17.24 | 22.41 | 13.79 | 46.55 | ||
神狐W18-19 矿藏 | SC2 | 149.46~152.46 | 18.74 | 0.20 | 4.71 | 0.67 | 7.40 | 87.22 | 本文 |
SC2 | 158.3~163.34 | 19.31 | 0.24 | 8.55 | 1.14 | 8.55 | 81.77 | ||
SC2 | 168.59~170.55 | 22.78 | 0.15 | 24.75 | 1.98 | 11.88 | 61.39 | ||
琼东南GMGS5-W08 矿藏 | GMGS-W08 | 81.45~81.55 | 19.81 | 0.26 | 2.65 | 2.65 | 9.93 | 84.77 | [ |
GMGS-W08 | 115.16~115.29 | 28.15 | 0.31 | 3.29 | 3.29 | 15.13 | 78.29 |
图2 南海北部高饱和度水合物储层沉积物中可溶有机质的生物标志化合物分布特征 TIC—总离子流色质图(total ions chromatogram);Pr—姥鲛烷;Ph—植烷;UCMs—难分辨的复杂化合物;Ts—18α(H)-22,29,30-三降藿烷;Tm—17α(H)-22,29,30—三降藿烷;CnH—Cn藿烷;CnNH—Cn降藿烷;CnM—Cn莫烷;αβ-C30H—17α(H);21β(H)—C30藿烷;ββ-CnH—17β(H);21β(H)—Cn藿烷。红色点标注为地质构型化合物;蓝色点标注为生物构型化合物。
Fig.2 Biomarker characteristics of soluble organic matter within the highly saturated gas hydrate reservoirs in the northern South China Sea
水合物矿藏 | 站位名 | 深度(bsf)/m | 岩性 | 主峰碳 | UCMs | Pr/Ph | Pr/nC17 | Ph/nC18 | C21-/22+ | TAR |
---|---|---|---|---|---|---|---|---|---|---|
神狐W11-17矿藏 | W17D | 229.02 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.92 | 0.63 | 0.40 | 0.74 | 1.23 |
250.36 | 黏土质粉砂 | nC18,nC31 | 轻微 | 0.86 | 0.64 | 0.48 | 1.01 | 0.96 | ||
神狐W18319矿藏 | SC2 | 149.46~152.46 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.68* | 0.41* | 0.28* | 1.06* | 0.89 |
158.3~163.34 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.49* | 0.49* | 0.46* | 0.56* | 1.45 | ||
168.59~170.55 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.77* | 0.56* | 0.41* | 0.60* | 1.37 | ||
琼东南GMGS53W08矿藏 | GMGS-W08 | 81.45~81.55 | 黏土质粉砂 | nC17,nC31* | 轻微 | 0.86* | 0.92* | 0.99* | 0.26* | 5.54 |
115.16~115.29 | 黏土质粉砂 | nC17,nC31* | 轻微 | 0.82* | 1.13* | 1.06* | 0.17* | 9.00 | ||
水合物矿藏 | 站位名 | CPI | OEP | C19/ (C20+C21) TT | C24Tet/ C26TT | C28 S/ (S+R) TT | C29 S/ (S+R) TT | Ts/ (Ts+Tm) | C29-31 ββ/ (ββ+αβ) H | C29NH/ C30H |
神狐W11-17矿藏 | W17D | 1.54 | 1.64 | 0.10 | 0.66 | 0.49 | 0.50 | 0.23 | 1.05 | 0.26 |
1.67 | 1.78 | 0.10 | 0.54 | 0.49 | 0.49 | 0.17 | 0.86 | 0.31 | ||
神狐W18319矿藏 | SC2 | 1.55* | 1.65* | 0.17 | 0.67 | 0.48 | 0.49 | 0.34* | 0.92 | 0.11* |
1.37* | 1.47* | 0.12 | 0.74 | 0.50 | 0.48 | 0.39* | 0.66 | 0.13* | ||
1.50* | 1.56* | 0.05 | 0.72 | 0.51 | 0.49 | 0.45* | 0.44 | 0.21* | ||
琼东南GMGS53W08矿藏 | GMGS-W08 | 2.29* | 2.45* | 0.03 | 0.77* | 0.55 | 0.86 | 0.49 | 0.87 | 0.20 |
2.82* | 2.95* | 0.02 | 0.85* | 0.50 | 0.95 | 0.87 | 1.28 | 0.23 | ||
水合物矿藏 | 站位名 | C27 dia.st./ reg.st. | C27/ C27-29 reg.st. | C28/ C27-29 reg.st. | C29/ C27-29 reg.st. | ααα C29 20S/ (20S+20R) reg.st. | C29 ββ/(ββ+ αα) reg.st. | MPI-1 | Rc/% | 数据来源 文献 |
神狐W11-17矿藏 | W17D | 0.44 | 36.92 | 26.16 | 36.92 | 0.15 | 0.25 | 0.51 | 0.71 | 本文 |
0.32 | 22.06 | 39.34 | 38.61 | 0.10 | 0.23 | 0.52 | 0.71 | 本文 | ||
神狐W18319矿藏 | SC2 | 0.58* | 37.84 | 25.51 | 36.65 | 0.34* | 0.35* | 0.61* | 0.77* | [ |
0.59* | 37.12 | 26.70 | 36.18 | 0.39* | 0.37* | 0.57* | 0.74* | [ | ||
0.62* | 37.83 | 24.10 | 38.07 | 0.47* | 0.44* | 0.57* | 0.74* | [ | ||
琼东南GMGS53W08矿藏 | GMGS-W08 | 0.40* | 35.48 | 24.92 | 39.60 | 0.38* | 0.36* | 0.72* | 0.83* | [ |
0.40* | 35.50 | 27.52 | 36.98 | 0.37* | 0.35* | 0.79* | 0.87* | [ |
表4 南海北部高饱和度水合物储层沉积物可溶有机质的特征性生物标志物参数
Table 4 Biomarker parameters of soluble organic matter in highly saturated hydrate reservoirs in the northern South China Sea
水合物矿藏 | 站位名 | 深度(bsf)/m | 岩性 | 主峰碳 | UCMs | Pr/Ph | Pr/nC17 | Ph/nC18 | C21-/22+ | TAR |
---|---|---|---|---|---|---|---|---|---|---|
神狐W11-17矿藏 | W17D | 229.02 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.92 | 0.63 | 0.40 | 0.74 | 1.23 |
250.36 | 黏土质粉砂 | nC18,nC31 | 轻微 | 0.86 | 0.64 | 0.48 | 1.01 | 0.96 | ||
神狐W18319矿藏 | SC2 | 149.46~152.46 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.68* | 0.41* | 0.28* | 1.06* | 0.89 |
158.3~163.34 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.49* | 0.49* | 0.46* | 0.56* | 1.45 | ||
168.59~170.55 | 黏土质粉砂 | nC18,nC31 | 明显 | 0.77* | 0.56* | 0.41* | 0.60* | 1.37 | ||
琼东南GMGS53W08矿藏 | GMGS-W08 | 81.45~81.55 | 黏土质粉砂 | nC17,nC31* | 轻微 | 0.86* | 0.92* | 0.99* | 0.26* | 5.54 |
115.16~115.29 | 黏土质粉砂 | nC17,nC31* | 轻微 | 0.82* | 1.13* | 1.06* | 0.17* | 9.00 | ||
水合物矿藏 | 站位名 | CPI | OEP | C19/ (C20+C21) TT | C24Tet/ C26TT | C28 S/ (S+R) TT | C29 S/ (S+R) TT | Ts/ (Ts+Tm) | C29-31 ββ/ (ββ+αβ) H | C29NH/ C30H |
神狐W11-17矿藏 | W17D | 1.54 | 1.64 | 0.10 | 0.66 | 0.49 | 0.50 | 0.23 | 1.05 | 0.26 |
1.67 | 1.78 | 0.10 | 0.54 | 0.49 | 0.49 | 0.17 | 0.86 | 0.31 | ||
神狐W18319矿藏 | SC2 | 1.55* | 1.65* | 0.17 | 0.67 | 0.48 | 0.49 | 0.34* | 0.92 | 0.11* |
1.37* | 1.47* | 0.12 | 0.74 | 0.50 | 0.48 | 0.39* | 0.66 | 0.13* | ||
1.50* | 1.56* | 0.05 | 0.72 | 0.51 | 0.49 | 0.45* | 0.44 | 0.21* | ||
琼东南GMGS53W08矿藏 | GMGS-W08 | 2.29* | 2.45* | 0.03 | 0.77* | 0.55 | 0.86 | 0.49 | 0.87 | 0.20 |
2.82* | 2.95* | 0.02 | 0.85* | 0.50 | 0.95 | 0.87 | 1.28 | 0.23 | ||
水合物矿藏 | 站位名 | C27 dia.st./ reg.st. | C27/ C27-29 reg.st. | C28/ C27-29 reg.st. | C29/ C27-29 reg.st. | ααα C29 20S/ (20S+20R) reg.st. | C29 ββ/(ββ+ αα) reg.st. | MPI-1 | Rc/% | 数据来源 文献 |
神狐W11-17矿藏 | W17D | 0.44 | 36.92 | 26.16 | 36.92 | 0.15 | 0.25 | 0.51 | 0.71 | 本文 |
0.32 | 22.06 | 39.34 | 38.61 | 0.10 | 0.23 | 0.52 | 0.71 | 本文 | ||
神狐W18319矿藏 | SC2 | 0.58* | 37.84 | 25.51 | 36.65 | 0.34* | 0.35* | 0.61* | 0.77* | [ |
0.59* | 37.12 | 26.70 | 36.18 | 0.39* | 0.37* | 0.57* | 0.74* | [ | ||
0.62* | 37.83 | 24.10 | 38.07 | 0.47* | 0.44* | 0.57* | 0.74* | [ | ||
琼东南GMGS53W08矿藏 | GMGS-W08 | 0.40* | 35.48 | 24.92 | 39.60 | 0.38* | 0.36* | 0.72* | 0.83* | [ |
0.40* | 35.50 | 27.52 | 36.98 | 0.37* | 0.35* | 0.79* | 0.87* | [ |
图3 南海北部高饱和度水合物矿藏气体组分组成特征及其成因类型(d和e图版据文献[63]修改;f图版引自文献[36])
Fig.3 Compositional characteristics and genetic types of hydrate gas within the highly saturated hydrate reservoirs in the northern South China Sea (d and e plots were modified after [63]; f plot was adapted from [36])
图4 南海北部高饱和度水合物矿藏气体C1-C5组分稳定碳同位素分布图(a图数据引自文献[36];b图W18-19水合物矿藏数据引自文献[41])
Fig.4 Stable carbon isotope distribution of C1-nC5 components of highly saturated hydrate deposits in the northern South China Sea. (a) Data are adapted from [36]; (b) Data of W18-19 gas hydrate deposits are adapted from [41].
图5 南海北部水合物矿藏中未降解热解气、原生型微生物气和次生型微生物气贡献比例
Fig.5 Relative proportion of non-degraded thermogenic gas, primary microbial gas, and secondary microbial gas within the gas hydrate deposits in the northern South China Sea
图6 南海北部水合物矿藏分布区地层结构、断层及潜在气源层分布特征 a—神狐海域W18-19和W11-17水合物藏分布区的文昌组顶部构造和断层平面分布;b,c—神狐海域水合物藏分布区代表性地震解释剖面,剖面线位置见a;d—琼东南海域GMGS5-W08水合物藏分布区崖城组顶部构造和断层平面分布;e—琼东南海域GMGS5-W08水合物藏分布区代表性地震解释剖面,剖面线位置见d。
Fig.6 Distribution characteristics of stratigraphic sequences, faults, and potential gas source beds in the gas hydrate enrichment area of the northern South China Sea.
图7 南海北部水合物矿藏分布区原位地层温度和沉积物总有机碳(TOC)含量垂向分布特征
Fig.7 Vertical distribution of in-situ temperature and total organic carbon (TOC) content of sediments in the gas hydrate enrichment area in the northern South China Sea
图8 南海北部水合物矿藏分布区产甲烷带内代表性样品的产甲烷古菌类型和丰度特征
Fig.8 Types and abundance of methanogenic archaea within the representative sediment samples from the methanogenic zone of gas hydrate deposits in the northern South China Sea
图9 南海北部水合物矿藏分布区产甲烷带内代表性样品厌氧产甲烷培养实验结果(a图中神狐海域90~98 mbsf样品的数据引自文献[40])
Fig.9 Experimental results of anaerobic methanogenic culture of representative sediment samples from the methanogenic zone of gas hydrate deposit zones in the northern South China Sea (The data of sample 90-98 mbsf from the Shenhu area were adapted from [40])
图10 南海北部水合物矿藏分布区常规油气钻井的埋藏史和热史恢复图(a数据引自文献[36];b数据引自文献[71])
Fig.10 Burial and thermal history of conventional petroleum drilled wells within the gas hydrate-bearing area in the northern South China Sea. (a) The data were adapted from [36]; (b) The data were adapted from [71].
图11 南海北部高饱和度水合物矿藏的气源供给体系和成藏过程(a据文献[36]修改;b据文献[41]修改)
Fig.11 Gas source system and accumulation process of highly saturated gas hydrate deposits in the northern South China Sea. (a) Modified after [36]; (b) Modified after [41].
图12 天然气水合物的气源成因概念模型(a)和南海北部水合物成矿气体运聚模式(b)
Fig.12 (a) Conceptual model of the origin of hydrate gas, and (b) the migration and accumulation model of natural gas hydrate in the northern South China Sea.
[1] | COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates: a review[C]//COLLETT T S, JOHNSON A H, KNAPP C C, et al. Natural gas hydrates: energy resource potential and associated geologic hazards. Tulsa: American Association of Petroleum Geologists, 2009: 146-219. |
[2] | COLLETT T S. Energy resource potential of natural gas hydrates[J]. American Association of Petroleum Geologists Bulletin, 2002, 86(11): 1971-1992. |
[3] | KVENVOLDEN K A. The global occurrence of natural gas hydrates[J]. Natural Gas Hydrates Occurrence Distribution & Detection, 2001: 3-18. |
[4] | COLLETT T S, BOSWELL R, WAITE W F, et al. India national gas hydrate program expedition 02 summary of scientific results: gas hydrate systems along the eastern continental margin of India[J]. Marine and Petroleum Geology, 2019, 108: 39-142. |
[5] | SASSEN R, LOSH S L, CATHLES III L, et al. Massive vein-filling gas hydrate: relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2001, 18(5): 551-560. |
[6] |
YE J L, WEI J G, LIANG J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea[J]. Marine and Petroleum Geology, 2019, 104: 29-39.
DOI |
[7] | ZHANG G X, LIANG J Q, LU J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. |
[8] | 张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670-680. |
[9] | MENG M M, LIANG J Q, LU J A, et al. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan Basin, Northwest South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 177: 103628 |
[10] | ZHANG W, LIANG J Q, WEI J G, et al. Geological and geophysical features of and controls on occurrence and accumulation of gas hydrates in the first offshore gas-hydrate production test region in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104191. |
[11] | WANG X J, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. |
[12] | 吴能友, 梁金强, 王宏斌, 等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质, 2008, 22(3): 356-362. |
[13] | 苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8): 77-89. |
[14] | KVENVOLDEN K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11/12): 997-1008. |
[15] | MILKOV A V. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36(5): 681-702. |
[16] |
戴金星, 倪云燕, 黄士鹏, 等. 中国天然气水合物气的成因类型[J]. 石油勘探与开发, 2017, 44(6): 837-848.
DOI |
[17] | LI Y Y, CHANG J Y, LU H L. Geochemical characteristics of gases associated with natural gas hydrate[J]. Frontiers in Marine Science, 2022, 9: 968647. |
[18] | WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/2/3): 291-314. |
[19] | MILKOV A V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs[J]. Organic Geochemistry, 2011, 42(2): 184-207. |
[20] | WU N Y, ZHANG H Q, YANG S X, et al. Gas hydrate system of Shenhu area, northern South China Sea: geochemical results[J]. Journal of Geological Research, 2011, 2011: 370298. |
[21] | 何家雄, 颜文, 祝有海, 等. 全球天然气水合物成矿气体成因类型及气源构成与主控因素[J]. 海洋地质与第四纪地质, 2013, 33(2): 121-128. |
[22] | CHOI J Y, KIM J H, TORRES M E, et al. Gas origin and migration in the Ulleung Basin, East Sea: results from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2)[J]. Marine and Petroleum Geology, 2013, 47: 113-124. |
[23] | MILKOV A V, CLAYPOOL G E, LEE Y J, et al. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1007-1026. |
[24] | KIDA M, JIN Y, WATANABE M, et al. Chemical and crystallographic characterizations of natural gas hydrates recovered from a production test site in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 396-403. |
[25] | SASSEN R, JOYE S, SWEET S T, et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope[J]. Organic Geochemistry, 1999, 30(7): 485-497. |
[26] | SASSEN R, ROBERTS H H, CARNEY R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes[J]. Chemical Geology, 2004, 205(3/4): 195-217. |
[27] | LORENSON T D, COLLETT T S. National Gas Hydrate Program Expedition 01 offshore India; gas hydrate systems as revealed by hydrocarbon gas geochemistry[J]. Marine and Petroleum Geology, 2018, 92: 477-492. |
[28] | STADNITSKAIA A, IVANOV M K, POLUDETKINA E N, et al. Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions[J]. Marine and Petroleum Geology, 2008, 25(10): 1040-1057. |
[29] | 黄霞, 祝有海, 卢振权, 等. 南海北部天然气水合物钻探区烃类气体成因类型研究[J]. 现代地质, 2010, 24(3): 576-580. |
[30] | 苏丕波, 雷怀彦, 梁金强, 等. 神狐海域气源特征及其对天然气水合物成藏的指示意义[J]. 天然气工业, 2010, 30(10): 103-108. |
[31] | LIU C L, MENG Q G, HE X L, et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration, 2015, 152: 67-74. |
[32] |
苏丕波, 梁金强, 沙志彬, 等. 神狐深水海域天然气水合物成藏的气源条件[J]. 西南石油大学学报(自然科学版), 2014, 36(2): 1-8.
DOI |
[33] | FANG Y X, WEI J G, LU H L, et al. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea[J]. Journal of Asian Earth Sciences, 2019, 182: 103924. |
[34] | ZHANG W, LIANG J Q, WEI J G, et al. Origin of natural gases and associated gas hydrates in the Shenhu area, northern South China Sea: results from the China gas hydrate drilling expeditions[J]. Journal of Asian Earth Sciences, 2019, 183: 103953. |
[35] | LIANG Q Y, XIAO X, ZHAO J, et al. Geochemistry and sources of hydrate-bound gas in the Shenhu area, northern South China sea: insights from drilling and gas hydrate production tests[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109459. |
[36] | LAI H F, FANG Y X, KUANG Z G, et al. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: implications from site GMGS5-W08[J]. Marine and Petroleum Geology, 2021, 123: 104774. |
[37] | LAI H F, QIU H J, LIANG J Q, et al. Geochemical characteristics and gas-to-gas correlation of two leakage-type gas hydrate accumulations in the western Qiongdongnan Basin, South China Sea[J]. Acta Geologica Sinica(English Edition), 2022, 96(2): 680-690. |
[38] | CHENG C, JIANG T, KUANG Z G, et al. Characteristics of gas chimneys and their implications on gas hydrate accumulation in the Shenhu area, northern South China sea[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103629. |
[39] | JIN J P, WANG X J, GUO Y Q, et al. Geological controls on the occurrence of recently formed highly concentrated gas hydrate accumulations in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2020, 116: 104294. |
[40] | LAI H F, DENG Y N, YANG L, et al. Origin of natural gas within the deep-sea uncompacted sediments of the Shenhu area, northern South China Sea: geochemical and methanogenic cultivation results[J]. Marine and Petroleum Geology, 2023, 147: 106015. |
[41] | LAI H F, QIU H J, KUANG Z G, et al. Integrated signatures of secondary microbial gas within gas hydrate reservoirs: a case study in the Shenhu area, northern South China Sea[J]. Marine and Petroleum Geology, 2022, 136: 105486. |
[42] | 付少英, 陆敬安. 神狐海域天然气水合物的特征及其气源[J]. 海洋地质动态, 2010, 26(9): 6-10. |
[43] | 龚再升. 中国近海含油气盆地新构造运动和油气成藏[J]. 石油与天然气地质, 2004, 25(2): 133-138. |
[44] | 何家雄, 张伟, 颜文. 等. 中国近海盆地幕式构造演化及成盆类型与油气富集规律[J]. 海洋地质与第四纪地质, 2014, 34(2): 121-134. |
[45] | LIANG J Q, ZHANG W, LU J A, et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea: insights from site GMGS5-W9-2018[J]. Marine Geology, 2019, 418: 106042. |
[46] | 张功成, 杨海长, 陈莹, 等. 白云凹陷: 珠江口盆地深水区一个巨大的富生气凹陷[J]. 天然气工业, 2014, 34(11): 11-25. |
[47] |
崔莎莎, 何家雄, 陈胜红, 等. 珠江口盆地发育演化特征及其油气成藏地质条件[J]. 天然气地球科学, 2009, 20(3): 384-391.
DOI |
[48] | 施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22. |
[49] |
米立军, 张功成, 沈怀磊, 等. 珠江口盆地深水区白云凹陷始新统—下渐新统沉积特征[J]. 石油学报, 2008, 29(1): 29-34.
DOI |
[50] |
米立军, 张忠涛, 庞雄, 等. 南海北部陆缘白云凹陷油气富集规律及主控因素[J]. 石油勘探与开发, 2018, 45(5): 902-913.
DOI |
[51] | 李绪宣, 钟志洪, 董伟良, 等. 琼东南盆地古近纪裂陷构造特征及其动力学机制[J]. 石油勘探与开发, 2006, 33(6): 713-721. |
[52] | HU B, WANG L S, YAN W B, et al. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2013, 77: 163-182. |
[53] |
邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征[J]. 石油学报, 2010, 31(4): 548-552.
DOI |
[54] | XIE Y H, ZHANG G C, SUN Z P, et al. Reservoir forming conditions and key exploration technologies of Lingshui 17-2 giant gas field in deepwater area of Qiongdongnan Basin[J]. Petroleum Research, 2019, 4(1): 1-18. |
[55] | HAO F, LI S T, SUN Y C, et al. Geology, compositional heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdongnan Basin, South China Sea[J]. American Association of Petroleum Geologists bulletin, 1998, 82(7): 1372-1384. |
[56] | LAI H F, FANG Y X, KUANG Z G, et al. Molecular and carbon isotopic characteristics during natural gas hydrate decomposition: insights from a stepwise depressurization experiment on a pressure core[J]. Energy & Fuels, 2021, 35(19): 15579-15588. |
[57] | WEI J G, FANG Y X, LU H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu sea area, South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 622-628. |
[58] |
朱俊章, 施和生, 何敏, 等. 珠江口盆地白云凹陷深水区L W3-1-1 井天然气地球化学特征及成因探讨[J]. 天然气地球科学, 2008, 19(2): 229-233.
DOI |
[59] | 张迎朝, 徐新德, 甘军, 等. 琼东南盆地深水区L18气田上新统地层圈闭气田形成条件及成藏模式[J]. 海洋学报, 2019, 41(3): 121-133. |
[60] | MARZI R, TORKELSON B E, OLSON R K. A revised carbon preference index[J]. Organic Geochemistry, 1993, 20(8): 1303-1306. |
[61] | RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10. |
[62] | BERNARD B B, BROOKS J M, SACKETT W M. A geochemical model for characterization of hydrocarbon gas sources in marine sediments[C]// Proceedings of offshore technology conference. Houston: Offshor Technology Conference, 1977: 435-438. |
[63] | MILKOV A V, ETIOPE G. Revised genetic diagrams for natural gases based on a global dataset of >20000 samples[J]. Organic Geochemistry, 2018, 125: 109-120. |
[64] | CHUNG H M, GORMLY J R, SQUIRES R M. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution[J]. Chemical Geology, 1988, 71(1/2/3): 97-104. |
[65] | LIU Q Y, WU X Q, WANG X F, et al. Carbon and hydrogen isotopes of methane, ethane, and propane: a review of genetic identification of natural gas[J]. Earth-Science Reviews, 2019, 190: 247-272. |
[66] | HUANG H P, LARTER S. Secondary microbial gas formation associated with biodegraded oils from the Liaohe Basin, NE China[J]. Organic Geochemistry, 2014, 68: 39-50. |
[67] | SASSEN R, MILKOV A V, OZGUL E, et al. Gas venting and subsurface charge in the Green Canyon area, Gulf of Mexico continental slope: evidence of a deep bacterial methane source?[J]. Organic Geochemistry, 2003, 34(10): 1455-1464. |
[68] | 段昌海, 张翠景, 孙艺华, 等. 新型产甲烷古菌研究进展[J]. 微生物学报, 2019, 59(6): 981-995. |
[69] | 承磊, 郑珍珍, 王聪, 等. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5): 1143-1164. |
[70] |
TANG X Y, YANG S C, HU S B. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea[J]. Frontiers of Earth Science, 2018, 12(3): 532-544.
DOI |
[71] | FU J, CHEN C, LI M J, et al. Petroleum charging history of Neogene reservoir in the Baiyun Sag, Pearl River Mouth Basin, South China sea[J]. Journal of Petroleum Science and Engineering, 2020, 190: 106945. |
[72] | SOROKIN D Y, ABBAS B, MERKEL A Y, et al. Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 3739-3745. |
[73] | HUANG B J, TIAN H, LI X S, et al. Geochemistry, origin and accumulation of natural gases in the deepwater area of the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2016, 72: 254-267. |
[74] | FU J, ZHANG Z T, CHEN C, et al. Geochemistry and origins of petroleum in the Neogene reservoirs of the Baiyun Sag, Pearl River Mouth Basin[J]. Marine and Petroleum Geology, 2019, 107: 127-141. |
[75] | RICE D D, CLAYPOOL G E. Generation, accumulation, and resource potential of biogenic gas[J]. American Association of Petroleum Geologists Bulletin, 1981, 65(1): 5-25. |
[1] | 杨金秀, 王琛, 邢兰昌, 魏伟, 张伟, 韩维峰, 赵丽, 刘坤一. 海域天然气水合物相关的流体运移及海底甲烷渗漏研究[J]. 地学前缘, 2025, 32(2): 113-125. |
[2] | 姬梦飞, 王吉亮, 王伟巍, 张杰城, 刘雪芹, 吴时国. 神狐海域细粒沉积物水合物储层的地球物理特征研究[J]. 地学前缘, 2025, 32(2): 126-139. |
[3] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[4] | 管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165. |
[5] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
[6] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[7] | 王秀娟, 韩磊, 刘俊州, 靳佳澎, 匡增桂, 周吉林. 天然气水合物与游离气共存的地球物理特征与识别[J]. 地学前缘, 2025, 32(2): 20-35. |
[8] | 吴能友, 李彦龙, 蒋宇静, 孙金声, 谢文卫, 胡高伟, 王韧, 于彦江, 王金堂, 陈强, 申凯翔, 孙志文, 陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望[J]. 地学前缘, 2025, 32(2): 216-229. |
[9] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[10] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[11] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[12] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[13] | 何登发,马永生,刘波,蔡勋育,张义杰,张健. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26(1): 1-12. |
[14] | 刘圣乾,刘晖,姜在兴,夏中源,庞守吉,马文贤. 青海南部冻土区天然气水合物成藏控制因素[J]. 地学前缘, 2017, 24(6): 242-253. |
[15] | 孙春岩,赵浩,贺会策,张志冰,竺玮煌,孙逊,尹文斌,凌帆. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘, 2017, 24(6): 225-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||