

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 222-235.DOI: 10.13745/j.esf.sf.2025.10.9
收稿日期:2025-07-11
修回日期:2025-08-23
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*杨志兵(1982—),男,教授,博士生导师,主要从事多相渗流、水文地质、地下水环境等方面的研究。E-mail: zbyang@whu.edu.cn
作者简介:刘启明(2002—),男,硕士研究生,主要从事多孔介质多相渗流方面的研究。E-mail: liuqiming1@whu.edu.cn
基金资助:
LIU Qiming1,2(
), YANG Zhibing1,2,*(
), WU Ting1,2
Received:2025-07-11
Revised:2025-08-23
Online:2026-01-25
Published:2025-11-10
摘要: 微纳塑料(micro/nano-plastics,M/NPs)在多孔介质中的迁移与滞留机制是土壤与地下水污染领域的重要问题,然而受当前可视化技术的限制,两相流条件下M/NPs迁移与滞留过程的细观机理尚不明确。本研究基于三维可视化实验平台,直接观测并量化了渗吸条件下M/NPs在孔隙空间中的分布特征,重点分析了驱替结束后其在多孔介质骨架颗粒接触区、固相表面及液-液界面的滞留规律,探究了M/NPs粒径与驱替流量对其空间分布的控制机制。结果表明:M/NPs粒径通过改变M/NPs-固相表面与M/NPs-流体界面间的相互作用能来主导其滞留位点的选择;而M/NPs间的相互作用能大小是决定其能否聚集成团簇并滞留在孔隙空间的关键因素;驱替流量则通过改变固相-湿润相界面面积影响其滞留总量。此外,M/NPs滞留在多孔介质中不同点位的主导机制不同,其在多孔介质骨架颗粒接触区的滞留主要受筛分作用控制,而在固相表面与液-液界面处的滞留则主要依赖于界面吸附作用。在高剪切条件下滞留在固相表面的M/NPs可能会脱落,而骨架颗粒接触区作为低速区,其聚集团簇数量随流速增大而增加。本研究揭示并量化了M/NPs粒径与流速对其迁移滞留的作用机制,可为预测土壤和地下水等多相流体环境中污染物的迁移与归宿提供重要的理论依据。
中图分类号:
刘启明, 杨志兵, 吴婷. 两相流条件下微纳塑料颗粒迁移及滞留机理研究[J]. 地学前缘, 2026, 33(1): 222-235.
LIU Qiming, YANG Zhibing, WU Ting. Transport and retention mechanisms of micro/nano plastics during two-phase flow[J]. Earth Science Frontiers, 2026, 33(1): 222-235.
图2 M/NPs间、M/NPs-两相界面和M/NPs-固相表面之间的DLVO相互作用能
Fig.2 DLVO interaction energy between M/NPs, between M/NPs and the two-phase interface, and between M/NPs and the solid surface for M/NPs (a)—d=0.5 μm;(b)—d=1 μm;(c)—d=5 μm。
图3 不同粒径(d)M/NPs在不同驱替流量(Q)下多孔介质中非湿润相与M/NPs的分布
Fig.3 Distribution of the nonwetting liquid and M/NPs of different diameters (d) in porous media and displacement flow rates (Q) (a)-(c)—d=0.5 μm,Q=1、50和500 μL/min;(d)-(f)—d=1 μm,Q=1、50和500 μL/min;(g)-(i)—d=5 μm,Q=1、50和500 μL/min。比例尺代表100 μm。
图6 M/NPs团簇聚集点位示意图与显微实拍图像 ①骨架颗粒接触区;②固相表面;③液-液界面。
Fig.6 Schematic diagram and microscopy image showing M/NPs clusters accumulation at: (1) grain-grain contact area, (2) solid surfaces, and (3) fluid-fluid interfaces
图7 驱替流量Q=500 μL/min时粒径为5 μm的M/NPs颗粒在典型聚集位置的局部3D重构图像 (a)—玻璃微珠、非湿润相和M/NPs团簇局部3D重构图;(b)-(d)—驱替结束后在骨架颗粒接触区、固相表面及液-液界面处聚集的M/NPs团簇。为了清晰展示聚集在不同点位的M/NPs团簇,(b)和(c)去掉了非湿润相,(d)去掉了玻璃微珠。图中灰色区域为玻璃微珠,红色为残余非湿润相,蓝色为M/NPs团簇。
Fig.7 Local 3D reconstruction of 5 μm M/NPs clusters at typical accumulation sites after displacement at Q=500 μL/min
图8 粒径为0.5 μm的M/NPs颗粒在典型聚集位置的体积分布统计图 (a)-(d)分别展示了驱替流量Q=1、10、100和500 μL/min时典型聚集位置的M/NPs团簇的体积分布以及局部三维重构图。
Fig.8 Volume distribution with local 3D reconstructions of 0.5 μm M/NPs clusters at typical accumulation sites
图9 粒径为1 μm的M/NPs颗粒在典型聚集位置的体积分布统计图 (a)-(d)分别展示了驱替流量Q=1、10、100和500 μL/min时典型聚集位置的M/NPs团簇的体积分布以及局部三维重构图。
Fig.9 Volume distribution with local 3D reconstructions of 1 μm M/NPs clusters at typical accumulation sites
图10 粒径为5 μm的M/NPs颗粒在典型聚集位置的体积分布统计图 (a)-(d)分别展示了驱替流量Q=1、10、100和500 μL/min时典型聚集位置的M/NPs团簇的体积分布。
Fig.10 Volume distribution of 5 μm M/NPs clusters at typical accumulation sites
| [1] |
ROCHMAN C M, BROOKSON C, BIKKER J, et al. Rethinking microplastics as a diverse contaminant suite[J]. Environmental Toxicology and Chemistry, 2019, 38(4): 703-711.
DOI PMID |
| [2] |
O’CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527-534.
DOI PMID |
| [3] |
丁佳妍, 刘翔宇, 陈旭文, 等. 环境中微塑料的微生物降解机制与生物强化[J]. 地学前缘, 2025, 32(3): 248-262.
DOI |
| [4] |
VETHAAK A D, LEGLER J. Microplastics and human health[J]. Science, 2021, 371(6530): 672-674.
DOI PMID |
| [5] |
KOELMANS A A, MOHAMED NOR N H, HERMSEN E, et al. Microplastics in freshwaters and drinking water: critical review and assessment of data quality[J]. Water Research, 2019, 155: 410-422.
DOI PMID |
| [6] |
刘贺, 宋树贤, 孙梅, 等. 土壤和植物中微塑料研究现状分析及检测方法研究进展[J]. 地学前缘, 2024, 31(2): 183-195.
DOI |
| [7] |
BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling colloid attachment, straining, and exclusion in saturated porous media[J]. Environmental Science & Technology, 2003, 37(10): 2242-2250.
DOI URL |
| [8] |
CAI L, HU L L, SHI H H, et al. Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics[J]. Chemosphere, 2018, 197: 142-151.
DOI PMID |
| [9] | 谭博, 刘曙光, 代朝猛, 等. 滨海地下水交互带中的胶体运移行为研究综述[J]. 水科学进展, 2017, 28(5): 788-800. |
| [10] |
冶雪艳, 李铮, 罗冉, 等. 地下水人工补给过程中流速对多孔介质胶体堵塞的影响机理[J]. 化工学报, 2021, 72(11): 5520-5532.
DOI |
| [11] |
宋欢, 罗锡明, 张莉, 等. 微塑料对水中甲基橙的吸附特征分析[J]. 地学前缘, 2019, 26(6): 19-27.
DOI |
| [12] |
HE H Y, XIONG X F, WU T, et al. Pore-scale study of particle transport and clogging mechanisms in a porous micromodel[J]. Separation and Purification Technology, 2025, 362: 131929.
DOI URL |
| [13] |
TONG M P, HE L, RONG H F, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J]. Water Research, 2020, 169: 115284.
DOI URL |
| [14] | 陈晓彤, 郭照立. 基于Boltzmann方程的多孔介质中胶体输运模型[J]. 物理学报, 2025, 74(12): 191-203. |
| [15] | 袁瑞强, 郭威, 王鹏, 等. 多孔介质表面化学异质性对胶体运移的影响[J]. 环境科学学报, 2017, 37(9): 3498-3504. |
| [16] | 刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317. |
| [17] |
WU T, YANG Z B, HU R, et al. Film entrainment and microplastic particles retention during gas invasion in suspension-filled microchannels[J]. Water Research, 2021, 194: 116919.
DOI URL |
| [18] |
DANI A, YEGANEH M, MALDARELLI C. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface[J]. Journal of Colloid and Interface Science, 2022, 628: 931-945.
DOI PMID |
| [19] | 吴婷, 杨志兵, 胡冉, 等. 细颗粒运移与孔隙堵塞对两相渗流特性的影响[J]. 岩土力学, 2025, 46(6): 1755-1764, 1776. |
| [20] | WU T, YANG Z B, LEHOUX A, et al. Liquid fragmentation induced by particle aggregation during two-phase flow in 3D porous media[J]. Geophysical Research Letters, 2025, 52(3): e2024GL113063. |
| [21] |
WAN J M, WILSON J L. Colloid transport in unsaturated porous media[J]. Water Resources Research, 1994, 30(4): 857-864.
DOI URL |
| [22] |
ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724.
DOI URL |
| [23] | 袁瑞强, 郭威, 王鹏, 等. 高pH环境对胶体在饱和多孔介质中迁移的影响[J]. 中国环境科学, 2017, 37(9): 3392-3398. |
| [24] | 殷宪强, 孙慧敏, 易磊, 等. 孔隙水流速对胶体在饱和多孔介质中运移的影响[J]. 水土保持学报, 2010, 24(5): 101-104. |
| [25] |
HE H Y, WU T, CHEN Y F, et al. A pore-scale investigation of microplastics migration and deposition during unsaturated flow in porous media[J]. Science of the Total Environment, 2023, 858: 159934.
DOI URL |
| [26] | OCHIAI N, KRAFT E L, SELKER J S. Methods for colloid transport visualization in pore networks[J]. Water Resources Research, 2006, 42(12): 2006WR004961. |
| [27] | 袁瑞强, 张文新, 王仕琴. 饱和多孔介质中水流停滞对胶体吸附与解吸的影响[J]. 环境科学研究, 2020, 33(2): 431-437. |
| [28] |
XIONG X F, YANG Z B, HU R, et al. Predicting colloid transport and deposition in an array of collectors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659: 130762.
DOI URL |
| [29] |
WU T, YANG Z B, HU R, et al. Three-dimensional visualization reveals pore-scale mechanisms of colloid transport and retention in two-phase flow[J]. Environmental Science & Technology, 2023, 57(5): 1997-2005.
DOI URL |
| [30] |
ZEVI Y, GAO B, ZHANG W, et al. Colloid retention at the meniscus-wall contact line in an open microchannel[J]. Water Research, 2012, 46(2): 295-306.
DOI PMID |
| [31] | 李东奇, 杨志兵, 张乐, 等. 空气-悬浮液驱替条件下颗粒边壁滞留研究[J]. 力学学报, 2023, 55(11): 2531-2538. |
| [32] |
WU T, CHEN Y R, YANG Z B. 3D pore-scale characterization of colloid aggregation and retention by confocal microscopy: Effects of fluid structure and ionic strength[J]. Science of the Total Environment, 2024, 917: 170349.
DOI URL |
| [33] |
YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: a review on methods, occurrence, sources, and potential risk[J]. Science of the Total Environment, 2021, 780: 146546.
DOI URL |
| [34] |
TORKZABAN S, BRADFORD S A, VAN GENUCHTEN M T, et al. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining[J]. Journal of Contaminant Hydrology, 2008, 96(1/2/3/4): 113-127.
DOI URL |
| [35] |
FLURY M, ARAMRAK S. Role of air-water interfaces in colloid transport in porous media: a review[J]. Water Resources Research, 2017, 53(7): 5247-5275.
DOI URL |
| [36] |
MOLNAR I L, JOHNSON W P, GERHARD J I, et al. Predicting colloid transport through saturated porous media: a critical review: predicting colloid transport through saturated porous media[J]. Water Resources Research, 2015, 51(9): 6804-6845.
DOI URL |
| [37] |
MA H L, HRADISKY M, JOHNSON W P. Extending applicability of correlation equations to predict colloidal retention in porous media at low fluid velocity[J]. Environmental Science & Technology, 2013, 47(5): 2272-2278.
DOI URL |
| [38] | 张文静, 周晶晶, 刘丹, 等. 胶体在地下水中的环境行为特征及其研究方法探讨[J]. 水科学进展, 2016, 27(4): 629-638. |
| [39] | 叶芯瑶, 吴鸣, 胡晓农, 等. 纳米塑料颗粒在饱和多孔介质中的迁移规律[J]. 地质科技通报, 2022, 41(4): 225-233. |
| [40] |
RIJNAARTS H H M, NORDE W, LYKLEMA J, et al. DLVO and steric contributions to bacterial deposition in media of different ionic strengths[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/2/3/4): 179-195.
DOI URL |
| [41] | AUSET M, KELLER A A. Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels[J]. Water Resources Research, 2006, 42(12): 2005WR004639. |
| [42] |
BRADFORD S A, TORKZABAN S. Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models[J]. Vadose Zone Journal, 2008, 7(2): 667-681.
DOI URL |
| [43] | 蒋思晨, 白冰. 悬浮颗粒形状对其在多孔介质中迁移和沉积特性的影响[J]. 岩土力学, 2018, 39(6): 2043-2051. |
| [44] |
ZHANG W, MORALES V L, CAKMAK M E, et al. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration[J]. Environmental Science & Technology, 2010, 44(13): 4965-4972.
DOI URL |
| [45] |
PETOSA A R, JAISI D P, QUEVEDO I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions[J]. Environmental Science & Technology, 2010, 44(17): 6532-6549.
DOI URL |
| [46] | BIZMARK N, SCHNEIDER J, PRIESTLEY R D, et al. Multiscale dynamics of colloidal deposition and erosion in porous media[J]. Science Advances, 2020, 6(46): eabc2530. |
| [47] | BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Significance of straining in colloid deposition: evidence and implications[J]. Water Resources Research, 2006, 42(12): 2005WR004791. |
| [48] | JOHNSON W P, TONG M P, LI X Q. On colloid retention in saturated porous media in the presence of energy barriers: the failure of α, and opportunities to predict η[J]. Water Resources Research, 2007, 43(12): 2006WR005770. |
| [49] |
RYAN J N, ELIMELECH M. Colloid mobilization and transport in groundwater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107: 1-56.
DOI URL |
| [50] |
JOHNSON W P, LI X Q, ASSEMI S. Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition[J]. Advances in Water Resources, 2007, 30(6/7): 1432-1454.
DOI URL |
| [51] |
TORKZABAN S, BRADFORD S A, WALKER S L. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media[J]. Langmuir, 2007, 23(19): 9652-9660.
PMID |
| [52] | 代朝猛, 周辉, 刘曙光, 等. 地下水多孔介质中胶体与污染物协同运移规律研究进展[J]. 水资源与水工程学报, 2017, 28(5): 15-23. |
| [53] |
LI X Q, SCHEIBE T D, JOHNSON W P. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon[J]. Environmental Science & Technology, 2004, 38(21): 5616-5625.
DOI URL |
| [54] |
SASIDHARAN S, TORKZABAN S, BRADFORD S A, et al. Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 169-179.
DOI URL |
| [1] | 管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165. |
| [2] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
| [3] | 刘咏, 张琪, 钱家忠, 吴盾, 张文永. 基于图像法的多孔介质双分子反应溶质运移模拟[J]. 地学前缘, 2022, 29(3): 248-255. |
| [4] | 宫猛, 李红谊, 徐小明, 李信富, 贾晋生. 青藏高原东部基于噪声的面波群速度分布特征[J]. 地学前缘, 2010, 17(5): 151-162. |
| [5] | 陈雅丽 段振豪 孙睿 毛世德 张驰. 利用量子力学势能数据预测温度、压力、盐度和沉积物孔径对甲烷水合物形成和分解的影响[J]. 地学前缘, 2009, 16(6): 359-371. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||