| [1] |
倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展, 2008, 23(5): 501-508.
DOI
|
| [2] |
ZAK D, HUPFER M, CABEZAS A, et al. Sulphate in freshwater ecosystems: a review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation[J]. Earth-Science Reviews, 2021, 212: 103446.
DOI
URL
|
| [3] |
JEFFRIES D S, CLAIR T A, COUTURE S, et al. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition[J]. Ambio, 2003, 32(3): 176-182.
PMID
|
| [4] |
马燕华, 苏春利, 刘伟江, 等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12): 4690-4699.
|
| [5] |
缪丽萍, 孟瑞芳, 王慧玮, 等. 滹沱河流域地下水硫酸盐污染特征及源解析[J]. 环境科学与技术, 2020(增刊1): 91-97.
|
| [6] |
中华人民共和国国土资源部和水利部. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017.
|
| [7] |
和珂, 和华, 李云华, 等. 高浓度硫酸盐饮水对人群健康的影响[J]. 中国卫生工程学, 2002, 1(4): 213-214.
|
| [8] |
GOETSCH P A, PALMER C G. Salinity tolerances of selected macroinvertebrates of the Sabie River, Kruger National Park, South Africa[J]. Archives of Environmental Contamination and Toxicology, 1997, 32(1): 32-41.
PMID
|
| [9] |
OSHCHEPKOV M, GOLOVESOV V, RYABOVA A, et al. Visualization of a novel fluorescent-tagged bisphosphonate behavior during reverse osmosis desalination of water with high sulfate content[J]. Separation and Purification Technology, 2021, 255: 117382.
|
|
ÖZACAR M, ŞENGIL İ A, TÜRKMENLER H. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin[J]. Chemical Engineering Journal, 2008, 143(1/2/3): 32-42.
|
| [11] |
QIAN Z, TIANWEI H, MACKEY H R, et al. Recent advances in dissimilatory sulfate reduction: from metabolic study to application[J]. Water Research, 2019, 150: 162-181.
DOI
PMID
|
| [12] |
符诗雨, 刘广立, 骆海萍, 等. 微生物电解系统生物阴极的硫酸盐还原特性研究[J]. 环境科学, 2014, 35(2): 626-632.
|
| [13] |
SMOLDERS A J P, LAMERS L P M, DEN HARTOG C, et al. Mechanisms involved in the decline of Stratiotes aloides L. in The Netherlands: sulphate as a key variable[J]. Hydrobiologia, 2003, 506/507/508/509: 603-610.
|
| [14] |
HAN Y, WU C, FU X, et al. Sulfate removal mechanism by internal circulation iron-carbon micro-electrolysis[J]. Separation and Purification Technology, 2021, 279: 119762.
DOI
URL
|
| [15] |
KUSHKEVYCH I, DORDEVI D, ALBERFKANI M I, et al. NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria[J]. Scientific Reports, 2023, 13(1): 13922.
DOI
PMID
|
| [16] |
阮仁俊, 李家乐, 欧坤轩, 等. RSI-MO工艺对沼气脱硫的影响及微生物种群分析[J]. 中国环境科学, 2021, 41(4): 1909-1916.
|
| [17] |
POSTGATE J R. Recent advances in the study of the sulfate-reducing bacteria[J]. Bacteriological Reviews, 1965, 29: 17.
|
| [18] |
ZHAO C, CHEN N, LIU T, et al. Effects of adding different carbon sources on the microbial behavior of sulfate-reducing bacteria in sulfate-containing wastewater[J]. Journal of Cleaner Production, 2023, 392: 136332.
DOI
URL
|
| [19] |
ZHANG Y, XIONG H, YANG C, et al. Optimization of immobilization treatment of dephosphorization microorganisms[J]. Journal of Anhui Agricultural Sciences, 2020, 48(13): 93-95, 99.
|
| [20] |
ZHAO C, GUO Q, CHEN N, et al. PVA-SA-maifanite activator toward Robust sulfate reduction in challenging environments[J]. Chemical Engineering Journal, 2024, 500: 157180.
DOI
URL
|
| [21] |
ZHANG Z, LIU G, FENG Y, et al. Inhibiting sulfate reducing bacteria activity by denitrification in an anaerobic baffled reactor: influencing factors and mechanism analysis[J]. Desalination and Water Treatment, 2014, 52(22): 4144-4153.
DOI
URL
|
| [22] |
贾建业, 兰斌明, 谢先德, 等. 硫化物矿物溶解度与溶液pH值的关系[J]. 长春科技大学学报, 2001(3): 241-246.
|
| [23] |
杨德玉, 张颖, 史荣久, 等. 硝酸盐抑制油田采出水中硫酸盐还原菌活性研究[J]. 环境科学, 2014, 35(1): 319-326.
|
| [24] |
PANG Y, WANG J. Various electron donors for biological nitrate removal: a review[J]. Science of the Total Environment, 2021, 794: 148699.
DOI
URL
|
| [25] |
方茜, 张朝升, 杜馨. 间歇曝气模式对同步硝化反硝化稳定性的影响[J]. 环境科学学报, 2009, 29(7): 1411-1418.
|
| [26] |
王姝琼, 梁存珍, 刘娴静. 批量反应器中碱法生物脱硫运行参数的优化[J]. 环境工程学报, 2019, 13(12): 3005-3011.
|
| [27] |
狄军贞, 安文博, 戴男男, 等. 玉米芯为碳源铁屑协同生物麦饭石活化颗粒的硫酸盐还原动力学及其锰离子响应实验[J]. 环境工程学报, 2016, 10(3): 1103-1108.
|
| [28] |
ZHAO C, CHEN N, LIU T, et al. The mechanism of microbial sulfate reduction in high concentration sulfate wastewater enhanced by maifanite[J]. Water Research, 2024, 258: 121775.
DOI
URL
|
| [29] |
FAN M, REN A, YAO M, et al. Disruptive effects of sewage intrusion into drinking water: microbial succession and organic transformation at molecular level[J]. Water Research, 2024, 266: 122281.
DOI
URL
|
| [30] |
MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454.
DOI
PMID
|
| [31] |
MAEKE M D. Degradation of marine and terrestrial organic matter in anoxic marine sediments of the Helgoland mud area[D]. Bremen: University of Bremen, 2025.
|
| [32] |
周娅, 买文宁, 代吉华, 等. 硫代硫酸钠联合硫铁矿自养反硝化脱氮性能[J]. 中国环境科学, 2020, 40(5): 2081-2086.
|
| [33] |
何瑶瑶, 李伟超, 陈张毅, 等. 硫酸盐还原菌竞争在电化学系统中对废水处理的影响[J]. 化学进展, 2024, 36(10): 1473-1489.
DOI
|
| [34] |
邓玉营, 施万胜, 黄振兴, 等. 有机负荷对秸秆消化系统性能及可利用态金属浓度的影响[J]. 农业工程学报, 2018, 34(5): 204-211.
|
| [35] |
杨杰, 李蕾, 叶文杰, 等. 有机垃圾厌氧消化性能强化技术研究现状及进展[J]. 环境工程学报, 2024, 18(8): 2076-2088.
|
| [36] |
杨平, 彭诗琪, 侯瑜秋, 等. 厌氧颗粒污泥与活性污泥微生物燃料电池对磺胺嘧啶的去除性能比较[J]. 环境工程学报, 2025, 19(1): 103-114.
|
| [37] |
PENG C, FAN X, XU Y, et al. Microscopic analysis towards rhamnolipid-mediated adhesion of Thiobacillus denitrificans: a QCM-D study[J]. Chemosphere, 2021, 271: 129539.
DOI
URL
|
| [38] |
孟志忠, 陆远芳, 陈新, 等. 脱氮硫杆菌硫转移酶SoxAX的建模及分子对接[J]. 现代食品科技, 2017, 33(4): 73-81.
|
| [39] |
严子春, 李永波, 彭虎. Mn2+对A/O-BAF系统处理效能和细菌群落多样性的影响[J]. 微生物学报, 2022, 62(1): 176-188.
|
| [40] |
SUN L, TOYONAGA M, OHASHI A, et al. Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(7): 2635-2642.
DOI
URL
|
| [41] |
MILLER M B, BASSLER B L. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55: 165-199.
PMID
|
| [42] |
BEGLEY T P, CHATTERJEE A, HANES J W, et al. Cofactor biosynthesis: still yielding fascinating new biological chemistry[J]. Current Opinion in Chemical Biology, 2008, 12(2): 118-125.
DOI
URL
|
| [43] |
ZSCHIEDRICH C P, KEIDEL V, SZURMANT H. Molecular mechanisms of two-component signal transduction[J]. Journal of Molecular Biology, 2016, 428(19): 3752-3775.
DOI
PMID
|
| [44] |
GREIN F, RAMOS A R, VENCESLAU S S, et al. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013, 1827(2): 145-160.
DOI
URL
|
| [45] |
HOFER U. New diversity in the sulfur cycle[J]. Nature Reviews Microbiology, 2018, 16(5): 261-261.
|