

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 444-469.DOI: 10.13745/j.esf.sf.2025.10.8
收稿日期:2025-08-23
修回日期:2025-09-27
出版日期:2026-11-25
发布日期:2025-11-10
作者简介:毛德强(1981—),男,博士,教授,博士生导师,主要从事地下水地球物理方面的研究。E-mail: maodeqiang@sdu.edu.cn
基金资助:
MAO Deqiang(
), MENG Jian, ZHAI Kexiang, ZENG Zihao, LIU Shiliang
Received:2025-08-23
Revised:2025-09-27
Online:2026-11-25
Published:2025-11-10
摘要:
精准刻画与监测地下水中污染物的时空特征是实现高效准确治理的重要任务。地下水系统的隐蔽性与非均质性限制了污染分布特征与运移规律的精准刻画。地球物理方法具有非侵入、低成本、高效率和信息连续等诸多优势,已成为刻画与监测地下水污染的重要手段。本文综述了地下水污染领域中较为成熟的地球物理方法,梳理了方法的原理、模型与研究范例。结果表明,针对地球物理方法应用中的不确定性问题,已发展了诸多机理模型、反演技术以及多源数据融合方法。结合室内柱实验与微观扫描等技术建立了污染介质作用下多孔介质地球物理响应的解译模型;开发了一系列映射水文地质参数与地球物理数据的岩石物理模型,实现了场地尺度由地球物理数据直接反演污染物浓度的可能性;在反演方法上发展了基于结构约束等先验信息的反演方法,降低了结果的不确定性;通过数值模拟新方法实现了多源数据的融合与耦合模拟。未来研究需要在微观孔隙尺度上深入探究污染物的运移机理,并建立参数统一的地下水污染地球物理响应数据库。同时,通过结合人工智能与数据同化等新技术,可以更精准、全面的描述、预测和管理地下水污染场地。
中图分类号:
毛德强, 孟健, 翟恪祥, 曾子豪, 刘士亮. 地下水污染地球物理研究进展[J]. 地学前缘, 2026, 33(1): 444-469.
MAO Deqiang, MENG Jian, ZHAI Kexiang, ZENG Zihao, LIU Shiliang. Research progress in geophysical methods on groundwater contamination[J]. Earth Science Frontiers, 2026, 33(1): 444-469.
图1 地下水污染地球物理主要方法发文量 a—随时间趋势;b—地球科学(黄色背景)、水资源(蓝色)、环境科学(绿色)领域主流期刊。
Fig.1 The amounts of publication concerning main geophysical methods on groundwater contamination
图3 LNAPL污染羽的高密度电阻率法探测刻画与钻孔取样验证(据文献[109]修改)
Fig.3 Characterization of LNAPL plume with ERT and verification by borehole sampling. Modified after [109].
图4 垃圾填埋场渗滤液的激发极化法与水化学综合探测(据文献[143]修改)
Fig.4 Integration of hydrochemical and IP analysis for leachate localization in a landfill. Modified after [143].
图5 尾矿库渗滤液渗漏通道与污染范围的联合调查与识别(据文献[158]修改)
Fig.5 Combined investigation of leakage channels and contamination areas of tailings pond leachate. Modified after [158].
图6 NAPL污染场地原位修复过程中的跨孔高密度电阻率时移监测(据文献[163]修改)
Fig.6 Time-lapse monitoring with cross-hole ERT for in-situ remediation of NAPL contaminated site. Modified after[163].
图7 LNAPLs原位化学氧化修复过程的激发极化监测砂箱实验(据文献[25]修改)
Fig.7 Sandbox experiments for monitoring of in-situ chemical oxidation remediation of LNAPLs with IP. Modified after [25].
图8 H2S注入过程的激发极化与反应性溶质运移模型监测(据文献[169]修改)
Fig.8 Monitoring of H2S injection process using induced polarization and reactive transport models. Modified after [169].
| [1] | 柴森, 李少楠. 全球地下水资源枯竭现状与应对[J]. 生态经济, 2025, 41(5): 5-8. |
| [2] |
张学航, 何宝南, 何江涛, 等. 永定河回补区地下水污染风险演化研究[J]. 地学前缘, 2025, 32(4): 523-536.
DOI |
| [3] | 赵勇胜. 试论场地污染水文地质学[J]. 水文地质工程地质, 2024, 51(3): 222-228. |
| [4] | 郑军卫, 张志强, 董连成. 环境地球物理学及其现状与进展[J]. 地球科学进展, 2000(1): 40-47. |
| [5] | 夏腾. LNAPLs污染物原位氧化修复的电性响应机理与动态监测研究[D]. 济南: 山东大学, 2024. |
| [6] | 吴吉春, 施小清, 祝晓彬, 等. 地下水地球物理[M]. 北京: 科学出版社, 2024. |
| [7] | BINLEY A, SLATER L. 近地表电阻率与激发极化法勘探理论与应用[M]. 毛德强, 译. 北京: 科学出版社, 2025. |
| [8] | 夏国治. 二十世纪中国物探[M]. 北京: 地质出版社, 2004. |
| [9] | 中国地球物理学会. 中国地球物理史[M]. 北京: 中国科学技术出版社, 2017. |
| [10] | 曾昭发, 薛建, 王者江, 等. 探地雷达物理模拟相似性准则及监测油气污染试验[J]. 长春科技大学学报, 1998(4):453-457. |
| [11] | 中华人民共和国生态环境部. 地下水污染地球物理探测技术指南(试行)[S/OL]. (2022-06-10)[2025-07-01]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk05/202206/W020220613594601874977.pdf. |
| [12] | U.S. Environmental Protection Agency. Use of airborne, surface, and borehole geophysical techniques at contaminated sites: a reference guide[S/OL]. (1993-09)[2025-07-01]. https://www.epa.gov/system/files/documents/2024-11/epa-reference-guide-use-of-airborne-surface-borehole-geophysical-techniques-at-contaminated-sites.pdf. |
| [13] |
CHAO C, MA X, LIU S, et al. Characterization of solid waste deposit using electrical resistivity tomography and time domain induced polarization[J]. Journal of Environmental Management, 2024, 366: 121854.
DOI URL |
| [14] |
MENG J, DONG Y, XIA T, et al. Detailed LNAPL plume mapping using electrical resistivity tomography inside an industrial building[J]. Acta Geophysica, 2022, 70(4): 1651-1663.
DOI |
| [15] | FIANDACA G, AUKEN E, CHRISTIANSEN A V, et al. Time-domain-induced polarization: full-decay forward modeling and 1D laterally constrained inversion of Cole-Cole parameters[J]. Geophysics, 2012, 77(3): E213-E225. |
| [16] |
MENG J, MA X, CHAO C, et al. On the reliability of time domain induced polarization for contaminated site: partial integral vs full decay[J]. Engineering Geology, 2025, 353: 108125.
DOI URL |
| [17] | KANG X, KOKKINAKI A, SHI X, et al. Integration of deep learning‐based inversion and upscaled mass‐transfer model for DNAPL mass‐discharge estimation and uncertainty assessment[J]. Water Resources Research, 2022, 58(10): e2022WR033277. |
| [18] | BÜCKER M, HÖRDT A. Long and short narrow pore models for membrane polarization[J]. Geophysics, 2013, 78(6): E299-E314. |
| [19] | WELLER A, SLATER L, BINLEY A, et al. Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range[J]. Geophysics, 2015, 80(2): D161-D173. |
| [20] | 王升超, 韩立国, 巩向博, 等. 基于局部采样MCMC方法的时移探地雷达反演[J]. 地球物理学报, 2022, 65(3): 1135-1143. |
| [21] | 吴俊军, 刘四新, 李彦鹏, 等. 跨孔雷达全波形反演成像方法的研究[J]. 地球物理学报, 2014, 57(5): 1623-1635. |
| [22] | 刘斌, 聂利超, 李术才, 等. 三维电阻率空间结构约束反演成像方法[J]. 岩石力学与工程学报, 2012, 31(11): 2258-2268. |
| [23] |
MA X, ZHOU J, LI J, et al. Image-guided structure-constrained inversion of electrical resistivity data for improving contaminations characterization[J]. Computers & Geosciences, 2024, 185: 105545.
DOI URL |
| [24] |
HAN Z, KANG X, WU J, et al. Improved solute transport modeling through joint estimation of hydraulic conductivity and dispersivities from tracer and ERT data[J]. Advances in Water Resources, 2024, 185: 104655.
DOI URL |
| [25] |
XIA T, HUISMAN J A, CHAO C, et al. Induced polarization monitoring of in-situ chemical oxidation for quantification of contaminant consumption[J]. Journal of Contaminant Hydrology, 2025, 269: 104481.
DOI URL |
| [26] |
JOHANSSON S, FIANDACA G, DAHLIN T. Influence of non-aqueous phase liquid configuration on induced polarization parameters: conceptual models applied to a time-domain field case study[J]. Journal of Applied Geophysics, 2015, 123: 295-309.
DOI URL |
| [27] |
DONNO G D, MELEGARI D, PAOLETTI V, et al. An integrated study of hard and soft cluster analyses for detecting leachate in a MSW landfill site using geoelectrical data[J]. Waste Management, 2025, 195: 22-31.
DOI PMID |
| [28] | MENG J, MAO D, ZHAI K, et al. Time domain induced polarization data acquisition at contaminated sites[C]// 7th Asia Pacific Meeting on Near Surface Geoscience and Engineering. Bunnik: European Association of Geoscientists & Engineers, 2025: 1-5. |
| [29] | 许振浩, 邵瑞琦, 林鹏, 等. 隧道不良地质识别:方法、现状及智能化发展方向[J]. 地球学报, 2024, 45(1): 5-24. |
| [30] | SWEET, ELLIOTT G. The history of geophysical prospecting[M]. Sudbury: Neville Spearman, 1978. |
| [31] | GARDNER F D. The electrical method of moisture determination in soils, results and modifications in 1897[M]. Washington D C: US Government Printing Office, 1898. |
| [32] |
RUST JR W M. A historical review of electrical prospecting methods[J]. Geophysics, 1938, 3(1): 1-6.
DOI URL |
| [33] |
STOLLAR R L, ROUX P. Earth resistivity surveys: a method for defining ground‐water contamination[J]. Groundwater, 1975, 13(2): 145-150.
DOI URL |
| [34] |
SEIGEL H, NABIGHIAN M, PARASNIS D S, et al. The early history of the induced polarization method[J]. The Leading Edge, 2007, 26(3): 312-321.
DOI URL |
| [35] | BULTER D K. Near-surface geophysics[M]. Tulsa: Society of Exploration Geophysics, 2005. |
| [36] | BOROVINSKAYA L B. Application of self-potential method to study filtration in soils and grounds[J]. Soil Science, 1970, 11: 113-121. |
| [37] | CORWIN R F. The self-potential method for environmental and engineering applications[J]. Geotechnical and environmental geophysics, 1990(1):127-146. |
| [38] | HEDSTROM E H. Phase measurements in electrical prospecting[R]. New York: American Institute of Mining Engineers, 1937: 827. |
| [39] | JOHNSON R W, GLASSCUM R, WOJTASINSKI R. Application of ground penetrating radar to soil survey[J]. Soil Survey Horizons, 1982, 23(3): 17-25. |
| [40] | BENSON A K, MUSTOE N B. DC resistivity, ground-penetrating radar, and soil and water quality data combined to assess hydrocarbon contamination: a case study in Arizona[J]. Environmental Geosciences, 1996, 3(4): 165-175. |
| [41] |
BÖRNER F D, SCHOPPER J R, WELLER A. Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements1[J]. Geophysical Prospecting, 1996, 44(4): 583-601.
DOI URL |
| [42] |
LOKE M H, BARKER R D. Practical techniques for 3D resistivity surveys and data inversion1[J]. Geophysical Prospecting, 1996, 44(3): 499-523.
DOI URL |
| [43] | JANSEN J, HADDAD B, FASSBENDER W, et al. Frequency domain electromagnetic induction sounding surveys for landfill site characterization studies[J]. Groundwater Monitoring & Remediation, 1992, 12(4): 103-109. |
| [44] |
LIU G M, BECKER A. Two-dimensional mapping of sea-ice keels with airborne electromagnetics available to purchase[J]. Geophysics, 1990, 55(2): 239-248.
DOI URL |
| [45] |
AHMED A, SULAIMAN W. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey[J]. Environmental Management, 2001, 28(5): 655-663.
PMID |
| [46] | BÖRNER F. Complex conductivity measurements of reservoir properties. Advances in Core Evaluation III (Reservoir Management)[M]. London: Gordon and Breach Science Publishers, 1992. |
| [47] | SCOTT J B T, BARKER R D. Determining pore-throat size in Permo-Triassic sandstones from low-frequency electrical spectroscopy[J]. Geophysical Research Letters, 2003, 30(9): 1450. |
| [48] |
REVIL A, BINLEY A, MEJUS L, et al. Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra[J]. Water Resources Research, 2015, 51(8): 6672-6700.
DOI URL |
| [49] |
DAHLIN T, LEROUX V, NISSEN J. Measuring techniques in induced polarisation imaging[J]. Journal of Applied Geophysics, 2002, 50(3): 279-298.
DOI URL |
| [50] |
WILKINSON P B, MELDRUM P I, CHAMBERS J E, et al. Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations[J]. Geophysical Journal International, 2006, 167(3): 1119-1126.
DOI URL |
| [51] |
LOKE M H, ACWORTH I, DAHLIN T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys[J]. Exploration Geophysics, 2003, 34: 182-187.
DOI URL |
| [52] |
GADER P, WEN-HSIUNG LEE, WILSON J N. Detecting landmines with ground-penetrating radar using feature-based rules, order statistics, and adaptive whitening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2522-2534.
DOI URL |
| [53] | WINDSOR C G, CAPINERI L. Automated object positioning from ground penetrating radar images[J]. Insight, 1998, 40(7): 482-488. |
| [54] | 王振东. 我国水文、工程、环境地质物探的现状、任务与发展趋势[J]. 中国地质, 1991(9): 26-29. |
| [55] | 张立敏. 地球物理学的一个新的应用领域:环境地球物理探测[J]. 地球物理学进展, 1989(4): 24-26. |
| [56] | 郭秀军, 孟庆生, 王基成, 等. 地球物理方法在含油工业污水管道渗漏探测中的应用[J]. 地球物理学进展, 2007(1): 279-282. |
| [57] | 程业勋, 刘海生, 赵章元. 城市垃圾污染的地球物理调查[J]. 工程地球物理学报, 2004(1): 26-30. |
| [58] | 王丽娟, 王支农, 郝书军. 地球物理方法在环保工作中的应用实例[J]. 勘察科学技术, 2003(2): 58-60, 63. |
| [59] | 李金铭, 张春贺, 肖顺. 水污染的导电性和激电性与污染浓度变化关系的几个实验结果[J]. 地球物理学报, 1999(3): 428-434. |
| [60] | 刘兆平, 杨进, 罗水余. 地球物理方法对垃圾填埋场探测的有效性试验研究[J]. 地学前缘, 2010, 17(3): 250-258. |
| [61] | 李华, 鲁光银, 何现启, 等. 探地雷达的发展历程及其前景探讨[J]. 地球物理学进展, 2010, 25(4): 1492-1502. |
| [62] | 孟健. 污染场地的时间域激发极化数据采集方法研究[D]. 济南: 山东大学, 2023. |
| [63] |
REY J, MENDOZA R, MARTÍNEZ J, et al. Combining geophysical methods (DC, IP, TDEM and GPR) to characterise mining waste in the Linares-La Carolina district (southern Spain)[J]. Journal of Environmental Management, 2022, 322: 116166.
DOI URL |
| [64] | CHAMBERS J, MELDRUM P, GUNN D, et al. Proactive infrastructure monitoring and evaluation (PRIME):a new electrical resistivity tomography system for remotely monitoring the internal condition of geotechnical infrastructure assets[C]//Proceedings in 3rd International Workshop on Geoelectrical Monitoring (GELMON). Vienna, Austria: Geologische Bundesanstalt, 2015. |
| [65] |
XIA T, ZHANG J, LI M, et al. Evolution of in-situ thermal-enhanced oxidative remediation monitored by induced polarization tomography[J]. Journal of Hydrology, 2025, 648: 132464.
DOI URL |
| [66] | BROWN F H. Process of locating metallic minerals or buried treasures: 645910[P]. 1900-01-01. |
| [67] | BROWN F H. Process of locating metallic minerals: 672309[P]. 1901-01-01. |
| [68] | MCCLATCHEY A. Electric prospecting apparatus: 681654[P]. 1901-01-01. |
| [69] | SCHLUMBERGER C. Process for determining the nature of the subsoil by the aid of electricity: 1163468[P]. 1915-01-01. |
| [70] | WENNER F. The four-terminal conductor and the Thomson bridge[J]. Bulletin of the Bureau of Standards, 1912(8): 559-610. |
| [71] | WENNER F. A method for measuring Earth resistivity[J]. Journal of the Washington Academy of Sciences, 1915, 5(16): 561-563. |
| [72] | SCHLUMBERGER C. Electrical process for the geological investigation of the porous strata traversed by drill holes: 1913293[P]. 1933-01-01. |
| [73] | GRIFFITHS D H, TURNBULL J, OLAYINKA A I. Two-dimensional resistivity mapping with a computer-controlled array[J]. First Break, 1990, 8(4): 121-129. |
| [74] | LYTLE R J, DINES K A. Impedance camera: A system for determining the spatial variation of electrical conductivity[R]. Report No. UCRL-52413. Lawrence Livermore Lab., 1978: 11. |
| [75] |
BINLEY A, CASSIANI G, MIDDLETON R, et al. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging[J]. Journal of Hydrology, 2002, 267(3/4): 147-159.
DOI URL |
| [76] | MANSOOR N, SLATER L. Aquatic electrical resistivity imaging of shallow-water wetlands[J]. Geophysics, 2007, 72(5): F211-F221. |
| [77] | JOHNSON T, VERSTEEG R, ROCKHOLD M, et al. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints[J]. Geophysics, 2012, 77(6): EN85-EN96. |
| [78] | LI Y, LIU Y, YIN C, et al. Three-dimensional electrical resistivity tomography for leachate imaging considering thin impermeable layers of landfills[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 3467673. |
| [79] |
CLÉMENT R, OXARANGO L, DESCLOITRES M. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill[J]. Waste Management, 2011, 31(3): 457-467.
DOI PMID |
| [80] |
SOUPIOS P, PAPADOPOULOS N, PAPADOPOULOS I, et al. Application of integrated methods in mapping waste disposal areas[J]. Environmental Geology, 2007, 53(3): 661-675.
DOI URL |
| [81] |
MARTI A, QUERALT P, MARCUELLO A, et al. Imaging leachate runoff from a landfill using magnetotellurics: the Garraf karst case[J]. Science of the Total Environment, 2024, 920: 170827.
DOI URL |
| [82] |
ABU SALEM H, GEMAIL K, NOSAIR A. A multidisciplinary approach for delineating wastewater flow paths in shallow groundwater aquifers: a case study in the southeastern part of the Nile Delta, Egypt[J]. Journal of Contaminant Hydrology, 2021, 236: 103701.
DOI URL |
| [83] |
LIU R, JIANG S, OU J, et al. Multifaceted anomaly detection framework for leachate monitoring in landfills[J]. Journal of Environmental Management, 2024, 368: 122130.
DOI URL |
| [84] |
DAHLIN T. Short note on electrode charge‐up effects in DC resistivity data acquisition using multi‐electrode arrays[J]. Geophysical Prospecting, 2000, 48(1): 181-187.
DOI URL |
| [85] | LABRECQUE D, DAILY W. Assessment of measurement errors for galvanic-resistivity electrodes of different composition[J]. Geophysics, 2008, 73(2): F55-F64. |
| [86] | GLOVER PW J. Geophysical properties of the near surface earth: electrical properties, in Treatise on Geophysics[M]. Amsterdam: Elsevier, 2015. |
| [87] |
JIANG X W, WAN L, WANG J Z, et al. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method[J]. Geophysical Research Letters, 2014, 41(8): 2812-2819.
DOI URL |
| [88] | ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[C]// Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942: 146, 54-62. |
| [89] |
WYLLIE M R J, Rose W D. Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data[J]. Journal of Petroleum Technology, 1950, 2(4): 105-118.
DOI URL |
| [90] |
PRIDE S. Governing equations for the coupled electromagnetics and acoustics of porous media[J]. Physical Review B, 1994, 50(21): 15678.
PMID |
| [91] |
WAXMAN M H, SMITS L J M. Electrical conductivities in oil-bearing shaly sands[J]. Society of Petroleum Engineers Journal, 1968, 8(2): 107-122.
DOI URL |
| [92] | WELLER A, SLATER L. Salinity dependence of complex conductivity of unconsolidated and consolidated materials: comparisons with electrical double layer models[J]. Geophysics, 2012, 77(5): 185-198. |
| [93] | WELLER A, SLATER L, NORDSIEK S. Relationship between surface conductivity and induced polarisation parameters[C]//Near Surface Geoscience 2013 - 19th EAGE European Meeting of Environmental and Engineering Geophysics. Bochum, Germany: European Association of Geoscientists & Engineers, 2013: cp-354-00089. |
| [94] | FATT I. The network model of porous media[J]. Petroleum Transactions, 1956, 207: 144-181. |
| [95] | BERNABÉ Y, Li M, MAINEULT A. Permeability and pore connectivity: a new model based on network simulations[J]. Journal of Geophysical Research: Solid Earth, 2010, 115 (10): 1-14. |
| [96] |
DAY-LEWIS F D, LINDE N, HAGGERTY R, et al. Pore network modeling of the electrical signature of solute transport in dual-domain media[J]. Geophysical Research Letters, 2017, 44(10): 4908-4916.
DOI URL |
| [97] |
JAMES A I, GRAHAM W D, HATFIELD K, et al. Optimal estimation of residual non-aqueous phase liquid saturations using partitioning tracer concentration data[J]. Water Resources Research, 1997, 33(12): 2621-2636.
DOI URL |
| [98] | 赵瑞珏, 毛德强, 刘再斌, 等. 基于水力层析法的某煤矿承压含水层叠加放水试验分析[J]. 水文地质工程地质, 2021, 48(1): 1-9. |
| [99] | 刘雪松, 蔡五田, 李胜涛. 土壤与地下水中DNAPL的污染机理与调查技术[J]. 油气田环境保护, 2011, 21(6): 37-39. |
| [100] |
SOUEID AHMED A, JARDANI A, REVIL A, DUPONT J P. Hydraulic conductivity field characterization from the joint inversion of hydraulic heads and self-potential data[J]. Water Resources Research, 2014, 50(4): 3502-3522.
DOI URL |
| [101] | 康学远. 融合多源数据精细刻画DNAPL污染源区结构[D]. 南京: 南京大学, 2021. |
| [102] | POLLOCK D, CIRPKA O A. Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography[J]. Water Resources Research, 2012, 48(1): W01505. |
| [103] |
MBOH C M, HUISMAN J A, VAN G N, et al. Coupled hydrogeophysical inversion of elecrical resitances and inflow measurements for topsoil hydraulic properties under constant head infiltration[J]. Near Surface Geophysics, 2012, 10(5): 1-14.
DOI URL |
| [104] |
KANG X, SHI X, DENG Y, et al. Coupled hydrogeophysical inversion of DNAPL source zone architecture and permeability field in a 3D heterogeneous sandbox by assimilation time-lapse cross-borehole electrical resistivity data via ensemble Kalman filtering[J]. Journal of Hydrology, 2018, 567: 149-164.
DOI URL |
| [105] |
KOCH J, NOWAK W. Identification of contaminant source architectures: a statistical inversion that emulates multiphase physics in a computationally practicable manner[J]. Water Resources Research, 2016, 52(2): 1009-1025.
DOI URL |
| [106] |
GHAFOURI H R, MOSHARAF-DEHKORDI M, AFZALAN B. Identification of immiscible NAPL contaminant sources in aquifers by a modified two-level saturation based imperialist competitive algorithm[J]. Journal of Contaminant Hydrology, 2017, 202: 33-46.
DOI PMID |
| [107] | KANG X, KOKKINAKI A, KITANIDIS P K, et al. Improved characterization of DNAPL source zones via sequential hydrogeophysical inversion of hydraulic‐head, self‐potential and partitioning tracer data[J]. Water Resources Research, 2020: 56(8): e2020WR027627. |
| [108] | KANG X, KOKKINAKI A, KITANIDIS P K, et al. Hydrogeophysical characterization of nonstationary DNAPL source zones by integrating a convolutional variational autoencoder and ensemble smoother[J]. Water Resources Research, 2021, 57(2): e2020WR028538. |
| [109] |
XIA T, DONG Y, MAO D, et al. Delineation of LNAPL contaminant plumes at a former perfumery plant using electrical resistivity tomography[J]. Hydrogeology Journal, 2021, 29(3): 1189-1201.
DOI |
| [110] | SCHLUMBERGER C. Etude sur la prospection electrique du sous-sol[M]. Paris: Gauthier-Villars, 1920. |
| [111] | WEISS O. The limitations of geophysical methods and the new possibilities opened up by an electrochemical method for determining geological formations at great depths[C]// Proceeding of the 1st World Petroleum Congress. London: World Petroleum Council, 1933. |
| [112] | POTAPENKO G. Method of determining the presence of oil: 2190320[P]. 1940-01-01. |
| [113] |
BLEIL D F. Induced polarization: a method of geophysical prospecting[J]. Geophysics, 1953, 18: 605-635.
DOI URL |
| [114] |
VACQUIER V. et al. Prospecting for ground water by induced electrical polarization[J]. Geophysics, 1957, 22(3): 660-687.
DOI URL |
| [115] |
VINEGAR H, WAXMAN M. Induced polarization of shaly sands[J]. Geophysics, 1984, 49(8): 1267-1287.
DOI URL |
| [116] | BÖRNER F D, SCHÖN J H. A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks[J]. The Log Analyst, 1991, 32: 612-613. |
| [117] |
BINLEY A, HUBBARD S S, HUISMAN J A, et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales[J]. Water Resources Research, 2015, 51(6): 3837-3866.
PMID |
| [118] | DRASKOVITS P, HOBOT J, VERO L, et al. Induced-polarization surveys applied to evaluation of groundwater resources, Pannonian Basin, Hungary, induced polarization: applications and case histories[J]. Investigations in Geophysics, 1990, 4: 379-410. |
| [119] |
ROY K K, ELLIOTT H M. Resistivity and IP survey for delineating saline water and fresh water zones[J]. Geoexploration, 1980, 18(2): 145-162.
DOI URL |
| [120] | ZHANG C, REVIL A, FUJITA Y, et al. Quadrature conductivity: a quantitative indicator of bacterial abundance in porous media[J]. Geophysics, 2014, 79(6): D363-D375. |
| [121] | 华佳. 复电阻率法简介[J]. 地质与勘探, 1978(4): 71-76. |
| [122] |
DAHLIN T, LEROUX V. Improvement in time‐domain induced polarization data quality with multi‐electrode systems by separating current and potential cables[J]. Near Surface Geophysics, 2012, 10(6): 545-565.
DOI URL |
| [123] |
JOHANSSON S, HEDBLOM P, DAHLIN T. Spectral analysis of time domain induced polarization waveforms[J]. Journal of Applied Geophysics, 2020, 177: 104037.
DOI URL |
| [124] |
SEIGEL H O. Mathematical formulation and type curves for induced polarization[J]. Geophysics, 1959, 24(3): 547-565.
DOI URL |
| [125] |
WELLER A, SEICHTER M, KAMPKE A. Induced-polarization modelling using complex electrical conductivities[J]. Geophysical Journal International, 1996, 127(2): 387-398.
DOI URL |
| [126] |
OLDENBURG D W, LI Y. Inversion of induced polarization data[J]. Geophysics, 1994, 59(9): 1327-1341.
DOI URL |
| [127] |
KEMNA A, BINLEY A, RAMIREZ A, et al. Complex resistivity tomography for environmental applications[J]. Chemical Engineering Journal, 2000, 77(1/2): 11-18.
DOI URL |
| [128] | SLATER L, BINLEY A. Synthetic and field-based electrical imaging of a zerovalent iron barrier: implications for monitoring long-term barrier performance[J]. Geophysics, 2006, 71(5): B129-B137. |
| [129] |
FIANDACA G, RAMM J, BINLEY A, et al. Resolving spectral information from time domain induced polarization data through 2-D inversion[J]. Geophysical Journal International, 2013, 192(2): 631-646.
DOI URL |
| [130] |
REVIL A, COPEREY A, SHAO Z, et al. Complex conductivity of soils[J]. Water Resources Research, 2017, 53(8): 7121-7147.
DOI URL |
| [131] |
DIAS C A. Developments in a model to describe low-frequency electrical polarization of rocks[J]. Geophysics, 2000, 65(2): 437-451.
DOI URL |
| [132] | LESMES D P, FRYE K M. Influence of pore fluid chemistry on the complex conductivity and induced polarization responses of Berea sandstone[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B3): 4079-4090. |
| [133] | WELLER A, SLATER L, NORDSIEK S. On the relationship between induced polarization and surface conductivity: implications for petrophysical interpretation of electrical measurements[J]. Geophysics, 2013, 78(5): 315-325. |
| [134] |
SLATER L, BARRASH W, MONTREY J, et al. Electrical‐hydraulic relationships observed for unconsolidated sediments in the presence of a cobble framework[J]. Water Resources Research, 2014, 50(7): 5721-5742.
DOI URL |
| [135] |
TARASOV A, TITOV K. On the use of the Cole-Cole equations in spectral induced polarization[J]. Geophysical Journal International, 2013, 195(1): 352-356.
DOI URL |
| [136] | MA X, SCHWARTZ N, CHAO C, et al. Unveiling spectral induced polarization responses of ZVI‐AC‐sand mixtures in groundwater remediation[J]. Journal of Geophysical Research: Solid Earth, 2025, 130(3): e2024JB030107. |
| [137] | NIU Q, REVIL A. Connecting complex conductivity spectra to mercury porosimetry of sedimentary rocks[J]. Geophysics, 2016, 81(1): E17-E32. |
| [138] | REVIL A. Spectral induced polarization of shaly sands: influence of the electrical double layer[J]. Water Resources Research, 2012, 48(2): 2011WR011260. |
| [139] | BERNABÉ Y. The transport properties of networks of cracks and pores[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B3): 4231-4241. |
| [140] | 王辉, 付书计, 葛帅寅, 等. 免维护超低噪声固体不极化电极的研制与性能测试[J]. 物探与化探, 2022, 46(3): 714-721. |
| [141] |
AHMED A S, REVIL A, GROSS L. Multiscale induced polarization tomography in hydrogeophysics: a new approach[J]. Advances in Water Resources, 2019, 134: 103451.
DOI URL |
| [142] |
MENG J, ZHANG J, MAO D, et al. Organic contamination distribution constrained with induced polarization at a waste disposal site[J]. Water, 2022, 14(22): 3630.
DOI URL |
| [143] |
XIA T, MENG J, DING B, et al. Integration of hydrochemical and induced polarization analysis for leachate localization in a municipal landfill[J]. Waste Management, 2023, 157: 130-140.
DOI URL |
| [144] | HÜLSMEYER C. Patent zur Ortung metallischer Objekte, Zusatz fur Entfernungsmessung (Ranging): DE169154[P]. 1904-01-01. |
| [145] | ELSAID M A H. Geophysical prospection of underground water in the desert by means of electromagnetic interference fringes[C]// Proceedings of the IRE, 1956: 44(1): 24-30. |
| [146] | WAITE A H, SCHMIDT S J. Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow[C]// IRE International Convention Record, Part 5, 1961: 38-54. |
| [147] |
WALFORD M E R. Radio echo sounding through an ice shelf[J]. Nature, 1964, 204(4956): 317-319.
DOI |
| [148] | SIMMONS G, STRANGWAY D, ANNAN A P. Surface Electrical Properties Experiment, in Apollo 17[R]. Preliminary Science Report, Scientific and Technical Office, NASA, Washington D C, 1973: 5-15. |
| [149] |
ANNAN A P, DAVIS J L. Impulse radar soundings in permafrost[J]. Radio Science, 1976, 11: 383-394.
DOI URL |
| [150] |
DOLPHIN L T. Radar probing of victorio peak, New Mexico[J]. Geophysics, 1978, 43(7): 1441-1448.
DOI URL |
| [151] |
BREWSTER M L, ANNAN A P. Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar[J]. Geophysics, 1994, 59: 1211-1221.
DOI URL |
| [152] |
KUMAR A, SINGH U, PRADHAN B. Enhancing subsurface contamination assessment via ensemble prediction of ground electrical property: a Colorado AMD-impacted wetland case study[J]. Journal of Environmental Management, 2024, 351:119943
DOI URL |
| [153] | ANNAN A P. GPR Methods for Hydrogeological Studies[M]//RUBIN Y, HUBBARD S S. Hydrogeophysics. Dordrecht: Springer, 2005. |
| [154] |
OLSSON O, FALK L, FORSLUND O, et al. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock[J]. Geophysical Prospecting, 1992, 40(2): 109-142.
DOI URL |
| [155] |
TOPP G C, DAVIS J L, ANNAN A P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16 (3): 574-582.
DOI URL |
| [156] | WHARTON R P, HAZEN G A, RAU R N, et al. Advancements in electromagnetic propagation logging[C]// Society of Petroleum Engineers (SPE) Proceedings. London: Society of Petroleum Engineers, 1980: 9041. |
| [157] |
SEN P N, SCALA C, COHEN M H. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads[J]. Geophysics, 1981, 46(5): 781-795.
DOI URL |
| [158] |
SHI B, LI X, HU W, et al. Environmental risk of tailings pond leachate pollution: traceable strategy for leakage channel and influence range of leachate[J]. Journal of Environmental Management, 2023, 331: 117341.
DOI URL |
| [159] | 李超, 西伟力, 毕涛, 等. VOCs快速检测在某化工企业搬迁遗留污染场地调查中的应用[J]. 环境监测管理与技术, 2018, 30(3): 53-55, 59. |
| [160] |
MARINELLI F, DURNFORD D S. LNAPL Thickness in monitoring wells considering hysteresis and entrapment[J]. Groundwater, 2010, 34(3):405-414.
DOI URL |
| [161] |
MARTINHO E, ALMEIDA F, MATIAS M J S. An experimental study of organic pollutant effects on time domain induced polarization measurements[J]. Journal of Applied Geophysics, 2006, 60(1): 27-40.
DOI URL |
| [162] |
DHU T, HEINSON G. Numerical and laboratory investigations of electrical resistance tomography for environmental monitoring[J]. Exploration Geophysics, 2004, 35(1): 33-40.
DOI URL |
| [163] |
XIA T, ZHANG J, LI M, et al. Towards efficient in situ gas thermal desorption remediation assisted with cross-borehole resistivity tomography[J]. Water Research, 2025, 281: 123587.
DOI URL |
| [164] | 姜勇, 徐刚, 杨洁, 等. 高密度电法在原位修复土壤过程中的监控研究[J]. 环境监测管理与技术, 2020, 32 (6): 18-22. |
| [165] | 杨迪琨, 刘兴昌, 祝福荣, 等. 土壤污染原位热脱附修复过程的电场监测方法[C]//中国地球物理学会. 中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 2019. |
| [166] | 和丽萍, 李敏敏, 吴见珣, 等. 电阻率成像法在原位修复药剂灌注成效评价中的应用[J]. 环境工程, 2023, 41(3): 185-191. |
| [167] | 舒成, 周建伟, 任嘉伟, 等. 基于“ERT”的土壤污染原位修复监测技术试验研究[J]. 水利水电技术, 2017, 48(12): 111-117+137. |
| [168] | 晁琛, 张家铭, 马新民, 等. ZVI-AC复合材料对硝酸盐污染修复效果的激发极化法监测实验[J/OL]. 地球与行星物理论评(中英文),1-13[2025-6-20].https://doi.org/10.19975/j.dqyxx.2025-011. |
| [169] |
CIRAULA D A, KLEINE-MARSHALL B I, GALECZKA I M, et al. Advanced monitoring of H2S injection through the coupling of reactive transport models and geophysical responses[J]. Environmental Science & Technology, 2024, 58(25): 11128-11139.
DOI URL |
| [170] | BECK AE. Self-potential or spontaneous polarization, in physical principles of exploration methods[M]. London: Macmillan Publishers Limited, 1981: 31-41. |
| [171] | REVIL A, JARDANI A. The self-potential method: theory and applications in environmental geosciences[M]. Cambridge: Cambridge University Press, 2013. |
| [172] | MUSSETT A E, KHAN M A. Induced polarisation and self-potential, in looking into the earth: an introduction to geological geophysics[M]. New York: Cambridge University Press, 2000: 202-209. |
| [173] | MARTÍNEZ-PAGÁN P, JARDANI A, REVIL A, et al. Self-potential monitoring of a salt plume[J]. Geophysics, 2010, 75(4): 1JA-Z98. |
| [174] |
AUKEN E, CHRISTIANSEN A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3): 752-761.
DOI URL |
| [175] |
BOAGA J. The use of FDEM in hydrogeophysics: a review[J]. Journal of Applied Geophysics, 2017, 139: 36-46.
DOI URL |
| [176] | CHRISTIANSEN A V, AUKEN E. A global measure for depth of investigation[J]. Geophysics, 2012, 77(4): WB171-WB177. |
| [177] | 郑传鹏. 基于大地电导率仪的浅地表污染探测研究[D]. 济南: 山东大学, 2024. |
| [178] |
NABIGHIAN M N. Quasi-static transient response of a conducting half-space: an approximate representation[J]. Geophysics, 1979, 44(10): 1700-1705.
DOI URL |
| [179] |
SPIES B R. Depth of investigation in electromagnetic sounding methods[J]. Geophysics, 1989, 54(7): 872-888.
DOI URL |
| [180] |
VIGNOLI G, FIANDACA G, CHRISTIANSEN A V, et al. Sharp spatially constrained inversion with applications to transient electromagnetic data[J]. Geophysical Prospecting, 2015, 63(1): 243-255.
DOI URL |
| [181] |
BAAWAIN M S, AL-FUTAISI A M, EBRAHIMI A, et al. Characterizing leachate contamination in a landfill site using Time Domain Electromagnetic (TDEM) imaging[J]. Journal of Applied Geophysics, 2018, 151: 73-81.
DOI URL |
| [182] |
FITTERMAN D V, ANDERSON W L. Effect of transmitter turn-off time on transient soundings[J]. Geoexploration, 1987, 24(2): 131-146.
DOI URL |
| [183] | DUNN K J, BERGMAN D J, LATORRACA G A. Nuclear magnetic resonance petrophysical and logging applications[M]. Oxford, UK: Elsevier Science, 2002: 312. |
| [184] |
YARAMANCI U, MÜLLER‐PETKE M. Surface nuclear magnetic resonance: a unique tool for hydrogeophysics[J]. The Leading Edge, 2009, 28(10): 1240-1247.
DOI URL |
| [185] | 鲁华章, 潘玉玲. 地面核磁共振方法在地下水烃类污染探测中的应用研究[C]// 第二届环境与工程地球物理国际会议论文集. 武汉: 中国地质大学 (武汉), 2006: 155-158 |
| [186] |
PIEGARI E, DE DONNO G, MELEGARI D, et al. A machine learning-based approach for mapping leachate contamination using geoelectrical methods[J]. Waste Management, 2023, 157: 121-129.
DOI URL |
| [187] |
PETCULESCU I, HYNDS P, BROWN R S, et al. Development of a “big data” groundwater microbial contamination index and spatial comparisons with enteric infection rates in southern Ontario[J]. Science of The Total Environment, 2024, 947: 174408.
DOI URL |
| [188] | QIANG S, SHI X, REVIL A, et al. Quantitative evaluation of the effect of pore fluids distribution on complex conductivity saturation exponents[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(8): e2024JB028689. |
| [189] | THALUND‐HANSEN R, TROLDBORG M, LEVY L, et al. Assessing Contaminant mass discharge uncertainty with application of hydraulic conductivities derived from geoelectrical cross‐borehole induced polarization and other methods[J]. Water Resources Research, 2023, 59(8): e2022WR034360. |
| [190] |
SANUADE O A, AROWOOGUN K I, AMOSUN J O. A review on the use of geoelectrical methods for characterization and monitoring of contaminant plumes[J]. Acta Geophysica, 2022, 70(5): 2099-2117.
DOI |
| [191] | SUO K, ZHAO M, LIU Y, et al. A study on the monitoring of LNAPL migration using ERT[J]. PLoS ONE, 2025, 20(1): 0315624. |
| [192] |
MENG J, HU K, WANG S, et al. A framework for risk assessment of groundwater contamination integrating hydrochemical, hydrogeological, and electrical resistivity tomography method[J]. Environmental Science and Pollution Research, 2024, 31(19): 28105-28123.
DOI |
| [193] | 聂慧君, 祝晓彬, 吴吉春, 等. 高密度电阻率法在湖南某铬污染场地调查中的应用[J]. 勘察科学技术, 2018(6): 50-54. |
| [194] |
ROCKHOLD M L, ROBINSON J L, PARAJULI K, et al. Groundwater characterization and monitoring at a complex industrial waste site using electrical resistivity imaging[J]. Hydrogeology Journal, 2020, 28(6): 2115-2127.
DOI |
| [195] | STROBEL C, DOERRICH M, et al. Organic matter matters: the imaginary conductivity of sediments rich in solid organic carbon[J]. Geophysical Research Letters, 2023, 50(23): e2023GL104630. |
| [196] |
GUETING N, KLOTZSCHE A, VAN DER KRUK J, et al. Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone penetration tests[J]. Journal of Hydrology, 2015, 524: 680-695.
DOI URL |
| [197] |
MARY B, SOTTANI A, BOAGA J, et al. Non-invasive investigations of closed landfills: an example in a karstic area[J]. Science of The Total Environment, 2023, 905: 167083.
DOI URL |
| [198] | MA X, ZHANG J, SCHWARTZ N, et al. Characterizing landfill extent, composition, and biogeochemical activity using electrical resistivity tomography and induced polarization under varying geomembrane coverage[J]. Geophysics, 2024, 89(4): E151-E164. |
| [199] |
WANG T P, CHEN C C, TONG L T, et al. Applying FDEM, ERT and GPR at a site with soil contamination: a case study[J]. Journal of Applied Geophysics, 2015, 121: 21-30.
DOI URL |
| [200] | DHAPRE M, JADHAV S, DAS D, et al. A systematic review of machine learning in groundwater monitoring[J]. Environmental Modelling & Software, 2025, 192: 106549. |
| [201] |
YU X, CUI T, SREEKANTH J, et al. Deep learning emulators for groundwater contaminant transport modelling[J]. Journal of Hydrology, 2020, 590: 125351.
DOI URL |
| [202] |
NAVARRO J M, EL AATIK A, PITA A, et al. Evaluation of the IoT device for nitrate and nitrite long-term monitoring in wastewater treatment plants[J]. IEEE Sensors Journal, 2025, 25(4): 7145-7153.
DOI URL |
| [203] |
BUTT N A, KHAN M Y, KHATTAK S A, et al. Multi-disciplinary investigation for detection, characterisation and monitoring of contamination from a solid waste illegal dumpsite, Peshawar, NW Pakistan[J]. Geomatics, Natural Hazards and Risk, 2025, 16(1): 2485338.
DOI URL |
| [204] |
YU Q, WANG Y, DONG D, et al. On the capability of a class of quantum sensors[J]. Automatica, 2021, 129: 109612.
DOI URL |
| [205] |
CUI Y A, LIU L, ZHU X. Unscented Kalman filter assimilation of time-lapse self-potential data for monitoring solute transport[J]. Journal of Geophysics and Engineering, 2017, 14(4): 920-929.
DOI URL |
| [206] | 李艳伶. 地下水监测中大数据技术的应用策略研究[J]. 环境科学与管理, 2020, 45(3): 129-132. |
| [207] |
ZIRAKBASH T, ADMIRAAL R, BORONINA A, et al. Assessing interpolation methods for accuracy of design groundwater levels for civil projects[J]. Journal of Hydrologic Engineering, 2020, 25(9): 04020042.
DOI URL |
| [208] | 高振记. “地质云3.0”:国家地球科学大数据共享服务平台简介[J]. 中国地质, 2022, 49(1): 2. |
| [1] | 姜凤, 周金龙, 周殷竹, 刘江涛, 曾妍妍, 刘钰, 丁启振. 哈密盆地绿洲区地下水污染预警研究[J]. 地学前缘, 2026, 33(1): 179-192. |
| [2] | 赵勇胜. 地下水污染羽的演变规律及其状态评判[J]. 地学前缘, 2026, 33(1): 152-162. |
| [3] | 张学航, 何宝南, 何江涛, 马硕, 刘菲, 杨珊珊, 史芫芫, 何炜, 杨白驹. 永定河回补区地下水污染风险演化研究[J]. 地学前缘, 2025, 32(4): 523-536. |
| [4] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
| [5] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
| [6] | 李志红, 王广才, 蔡五田, 刘菲, 黄丹丹. 某Cr(Ⅵ)污染场地修复的PRB反应材料及结构设计研究[J]. 地学前缘, 2021, 28(5): 186-196. |
| [7] | 张小文, 何江涛, 黄冠星. 石家庄地区浅层地下水铁锰分布特征及影响因素分析[J]. 地学前缘, 2021, 28(4): 206-218. |
| [8] | 刘淑琴,张尚军,牛茂斐,余力. 煤炭地下气化技术及其应用前景[J]. 地学前缘, 2016, 23(3): 97-102. |
| [9] | 刘兆平, 杨进, 罗水余. 地球物理方法对垃圾填埋场探测的有效性试验研究[J]. 地学前缘, 2010, 17(3): 250-258. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||