地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 444-469.DOI: 10.13745/j.esf.sf.2025.10.8

• 水文地质新技术新方法 • 上一篇    下一篇

地下水污染地球物理研究进展

毛德强(), 孟健, 翟恪祥, 曾子豪, 刘士亮   

  1. 山东大学 土建与水利学院, 山东 济南 250061
  • 收稿日期:2025-08-23 修回日期:2025-09-27 出版日期:2026-11-25 发布日期:2025-11-10
  • 作者简介:毛德强(1981—),男,博士,教授,博士生导师,主要从事地下水地球物理方面的研究。E-mail: maodeqiang@sdu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFE0113900);国家自然科学基金项目(42177056)

Research progress in geophysical methods on groundwater contamination

MAO Deqiang(), MENG Jian, ZHAI Kexiang, ZENG Zihao, LIU Shiliang   

  1. School of Civil Engineering, Shandong University, Jinan 250061, China
  • Received:2025-08-23 Revised:2025-09-27 Online:2026-11-25 Published:2025-11-10

摘要:

精准刻画与监测地下水中污染物的时空特征是实现高效准确治理的重要任务。地下水系统的隐蔽性与非均质性限制了污染分布特征与运移规律的精准刻画。地球物理方法具有非侵入、低成本、高效率和信息连续等诸多优势,已成为刻画与监测地下水污染的重要手段。本文综述了地下水污染领域中较为成熟的地球物理方法,梳理了方法的原理、模型与研究范例。结果表明,针对地球物理方法应用中的不确定性问题,已发展了诸多机理模型、反演技术以及多源数据融合方法。结合室内柱实验与微观扫描等技术建立了污染介质作用下多孔介质地球物理响应的解译模型;开发了一系列映射水文地质参数与地球物理数据的岩石物理模型,实现了场地尺度由地球物理数据直接反演污染物浓度的可能性;在反演方法上发展了基于结构约束等先验信息的反演方法,降低了结果的不确定性;通过数值模拟新方法实现了多源数据的融合与耦合模拟。未来研究需要在微观孔隙尺度上深入探究污染物的运移机理,并建立参数统一的地下水污染地球物理响应数据库。同时,通过结合人工智能与数据同化等新技术,可以更精准、全面的描述、预测和管理地下水污染场地。

关键词: 地下水污染, 地球物理方法, 岩石物理模型, 刻画与监测, 未来挑战

Abstract:

Accurate characterization and monitoring of the spatiotemporal distribution of contaminants in groundwater have become crucial objectives for effective groundwater management. However, the elusive nature and heterogeneity of groundwater contamination constrain the precise characterization of contamination distribution and migration paths. Geophysical methods offer advantages such as being non-invasive, low-cost, and efficient, while providing continuous information, and have thus emerged as important tools for characterizing and monitoring groundwater contamination. This review summarizes mature geophysical methods in the field of groundwater contamination, outlining their basic principles, models, and research examples. Through integrated column experiments and micro-scale imaging techniques, interpretive models for geophysical responses in porous media under contaminant influence were established. A series of petrophysical models were developed to relate hydrogeological parameters to geophysical data, demonstrating the potential for direct inversion of contaminant concentrations from field-scale geophysical measurements. Structure-constrained inversion methods that incorporate prior information were developed to reduce uncertainty in the results. Novel numerical simulation approaches were introduced to integrate and couple simulations of multi-source data. To address the problems of uncertainty in geophysical methods, various mechanistic models, inversion methods, and multi-source data fusion approaches have been developed. Future research should focus on the pore-scale mechanisms of contaminant migration and establish a unified petrophysical database of geophysical responses to groundwater contamination. Moreover, by combining new technologies such as artificial intelligence and data assimilation, it will be possible to describe, predict, and manage contaminated groundwater sites with greater accuracy and comprehensiveness.

Key words: groundwater contamination, geophysical methods, petrophysical models, characterization and monitoring, future challenges

中图分类号: