| [1] |
BAO Z, ZHAO Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China[J]. Ore Geology Reviews, 2008, 33(3/4): 519-535.
DOI
URL
|
| [2] |
池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007, 25(6): 641-650.
|
| [3] |
XIAO Y F, FENG Z Y, HU G H, et al. Leaching and mass transfer characteristics of elements from ion-adsorption type rare earth ore[J]. Rare Metals, 2015, 34(5): 357-365.
DOI
URL
|
| [4] |
赵中波. 离子型稀土矿原地浸析采矿及其推广应用中值得重视的问题[J]. 南方冶金学院学报, 2000, 21(3): 179-183.
|
| [5] |
HE Q, QIU J, CHEN J, et al. Progress in green and efficient enrichment of rare earth from leaching liquor of ion adsorption type rare earth ores[J]. Journal of Rare Earths, 2022, 40(3): 353-364.
DOI
URL
|
| [6] |
国秋艳, 张秋英, 李兆, 等. 水化学及氮氧同位素技术示踪离子型稀土矿区硝酸盐来源与转化过程[J]. 人民珠江, 2023, 44(5): 81-88, 96.
|
| [7] |
国秋艳. 离子型稀土矿区水体硝酸盐来源与迁移转化过程[D]. 武汉: 武汉工程大学, 2023.
|
| [8] |
ZHANG Q, SHU W, LI F, et al. Nitrate source apportionment and risk assessment: a study in the largest ion-adsorption rare earth mine in China[J]. Environmental Pollution, 2022, 302: 119052.
DOI
URL
|
| [9] |
高志强, 周启星. 稀土矿露天开采过程的污染及对资源和生态环境的影响[J]. 生态学杂志, 2011, 30(12): 2915-2922.
|
| [10] |
SHU W, ZHANG Q, AUDET J, et al. Baseflow and coupled nitrification-denitrification processes jointly dominate nitrate dynamics in a watershed impacted by rare earth mining[J]. Environmental Science & Technology, 2024, 59(1): 719-729.
DOI
URL
|
| [11] |
LI J, ZHU D, ZHANG S, et al. Application of the hydrochemistry, stable isotopes and MixSIAR model to identify nitrate sources and transformations in surface water and groundwater of an intensive agricultural karst wetland in Guilin, China[J]. Ecotoxicology and Environmental Safety, 2022, 231: 113205.
DOI
URL
|
| [12] |
张广禄, 刘海燕, 郭华明, 等. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503.
DOI
|
| [13] |
崔静思, 刘树锋, 高延康, 等. 土地利用变化下湛江市地下水硝酸盐含量评估[J]. 环境化学, 2022, 41(7): 2264-2275.
|
| [14] |
徐东辉, 黎涛, 林艳竹, 等. 基于关联性监测指标的辽东湾地下水硝酸盐源解析[J]. 地学前缘, 2025, 32(4): 376-387.
DOI
|
| [15] |
毛巍, 梁志伟, 李伟, 等. 利用氮、氧稳定同位素识别水体硝酸盐污染源研究进展[J]. 应用生态学报, 2013, 24(4): 1146-1152.
|
| [16] |
TORRES-MARTÍNEZ J A, MORA A, MAHLKNECHT J, et al. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion: a multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model[J]. Journal of Hazardous Materials, 2021, 417: 126103.
DOI
URL
|
| [17] |
ZHANG M, ZHI Y, SHI J, et al. Apportionment and uncertainty analysis of nitrate sources based on the dual isotope approach and a Bayesian isotope mixing model at the watershed scale[J]. Science of the Total Environment, 2018, 639: 1175-1187.
DOI
URL
|
| [18] |
ZHANG Y, SHI P, LI F, et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 2018, 208: 493-501.
DOI
PMID
|
| [19] |
XUE D, BOTTE J, DE BAETS B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater[J]. Water Research, 2009, 43(5): 1159-1170.
DOI
URL
|
| [20] |
CARREY R, BALLESTÉ E, BLANCH A R, et al. Combining multi-isotopic and molecular source tracking methods to identify nitrate pollution sources in surface and groundwater[J]. Water Research, 2021, 188: 116537.
DOI
URL
|
| [21] |
BIDDAU R, CIDU R, DA PELO S, et al. Source and fate of nitrate in contaminated groundwater systems: assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools[J]. Science of the Total Environment, 2019, 647: 1121-1136.
DOI
URL
|
| [22] |
TORRES-MARTÍNEZ J A, MORA A, KNAPPETT P S K, et al. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research, 2020, 182: 115962.
DOI
URL
|
| [23] |
徐春丽, 刘斯文, 魏吉鑫, 等. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征[J]. 矿产保护与利用, 2021, 41(4): 1-11.
|
| [24] |
刘芳. 龙南离子型稀土矿生态环境及综合整治对策[J]. 金属矿山, 2013, (5): 135-138.
|
| [25] |
金姝兰, 黄益宗, 胡莹, 等. 江西典型稀土矿区土壤和农作物中稀土元素含量及其健康风险评价[J]. 环境科学学报, 2014, 34(12): 3084-3093.
|
| [26] |
杨贤房. 赣南稀土矿区生态系统恢复力评价与调控研究[D]. 南昌: 江西师范大学, 2024.
|
| [27] |
葛勤, 张俊朋, 汪洋, 等. 大同盆地地下水硝酸盐分布、转化过程及来源解析[J]. 中国环境科学, 2025, 45(2):1004-1015.
|
| [28] |
吴志强, 潘林艳, 代俊峰, 等. 漓江流域岩溶与非岩溶农业小流域水体硝酸盐源解析[J]. 农业工程学报, 2022, 38(6): 61-71.
|
| [29] |
金赞芳, 胡晶, 吴爱静, 等. 基于多同位素的不同土地利用区域水体硝酸盐源解析[J]. 环境科学, 2021, 42(4): 1696-1705.
|
| [30] |
高珩, 谭行, 任宇, 等. 土壤含水层处理系统对再生水入渗过程中“三氮”去除的柱试验模拟[J]. 地学前缘, 2021, 28(5): 125-135.
DOI
|
| [31] |
DING J, JIANG Y, LIU Q, et al. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River Basin, China: a multi-scale analysis[J]. Science of the Total Environment, 2016, 551: 205-216.
|
| [32] |
LI S, JIANG H, XU Z, et al. Backgrounds as a potentially important component of riverine nitrate loads[J]. Science of the Total Environment, 2022, 838: 155999.
DOI
URL
|
| [33] |
张海林, 王重, 林广奇, 等. 济南趵突泉泉域岩溶水硝酸盐污染特征及其来源识别[J]. 中国岩溶, 2022, 41(6): 998-1006.
|
| [34] |
FENG B, ZHONG Y, HE J, et al. Nitrogen sources and conversion processes in shallow groundwater around a plain lake (Northwest China): evidenced by multiple isotopes and water chemistry[J]. Chemosphere, 2023, 337: 139322.
DOI
URL
|
| [35] |
CHEN X, ZHENG L, ZHU M, et al. Quantitative identification of nitrate and sulfate sources of a multiple land-use area impacted by mine drainage[J]. Journal of Environmental Management, 2023, 325 : 116551.
DOI
URL
|
| [36] |
李林霞, 李艳利, 杨梓睿, 等. 沁河上游硝酸盐的定量源解析及其季节性差异[J]. 环境科学研究, 2021, 34(11): 2636-2644.
|
| [37] |
KENDALL C, ELLIOTT E M, WANKEL S D. Tracing anthropogenic inputs of nitrogen to ecosystems[M]//KENDALL C, McDDNNELL J J. Stable isotopes in ecology and environmental science. Oxford: Blackwell, 2007: 375-449.
|
| [38] |
MURGULET D, TICK G R. Understanding the sources and fate of nitrate in a highly developed aquifer system[J]. Journal of Contaminant Hydrology, 2013, 155: 69-81.
DOI
PMID
|
| [39] |
LIN J, BOHLKE J K, HUANG S, et al. Seasonality of nitrate sources and isotopic composition in the Upper Illinois River[J]. Journal of Hydrology, 2019, 568: 849-861.
DOI
URL
|
| [40] |
MARIOTTI A, GERMON J, HUBERT P, et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62: 413-430.
DOI
URL
|
| [41] |
SAKA D, ADU-GYAMFI J, SKRZYPEK G, et al. Disentangling nitrate pollution sources and apportionment in a tropical agricultural ecosystem using a multi-stable isotope model[J]. Environmental Pollution, 2023, 328.
|
| [42] |
张文芮, 张妍, 石雯敏, 等. 渭河流域关中段地下水硝态氮来源解析[J]. 中国环境科学, 2022, 42(10): 4758-4767.
|
| [43] |
BOUMAIZA L, STOTLER R L, MAYER B, et al. How the δ18 versus δ15 plot can be used to identify a typical expected isotopic range of denitrification for NO3-impacted groundwaters[J]. ACS EST Water, 2024, 4(12): 5243-5254.
DOI
URL
|
| [44] |
JIANG H, LIU W, LI Y, et al. Multiple isotopes reveal a hydrology-dominated control on the nitrogen cycling in the Nujiang River Basin, the last undammed large river basin on the Tibetan Plateau[J]. Environmental Science & Technology, 2022, 56(7): 4610-4619.
DOI
URL
|
| [45] |
BIDDAU R, DORE E, DA PELO S, et al. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy)[J]. Water Research, 2023, 232: 119663.
DOI
URL
|
| [46] |
KENDALL C, MCDONNELL J J. Isotope tracers in catchment hydrology[M]. Amsterdam: Elsevier, 1998.
|
| [47] |
王诗绘, 马玉坤, 沈珍瑶. 氮氧稳定同位素技术用于水体中硝酸盐污染来源解析方面的研究进展[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 36-42.
|
| [48] |
HU M, LIU Y, ZHANG Y, et al. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources[J]. Water Research, 2019, 150: 418-430.
DOI
PMID
|
| [49] |
WANG Y, TANG Y, XU Y, et al. Isotopic dynamics of precipitation and its regional and local drivers in a plateau inland lake basin, Southwest China[J]. Science of the Total Environment, 2021, 763: 143043.
DOI
URL
|
| [50] |
JANI J, TOOR G S. Composition, sources, and bioavailability of nitrogen in a longitudinal gradient from freshwater to estuarine waters[J]. Water Research, 2018, 137: 344-354.
DOI
PMID
|
| [51] |
ZHANG H, XU Y, CHENG S, et al. Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China[J]. Science of the Total Environment, 2020, 717: 137134.
DOI
URL
|
| [52] |
张妍, 张秋英, 李发东, 等. 基于稳定同位素和贝叶斯模型的引黄灌区地下水硝酸盐污染源解析[J]. 中国生态农业学报(中英文), 2019, 27(3): 484-493.
|
| [53] |
崔玉环, 王杰, 郝泷, 等. 长江中下游平原升金湖流域硝酸盐来源解析及其不确定性[J]. 湖泊科学, 2021, 33(2): 474-482.
|
| [54] |
JI X L, SHU L L, CHEN W L, et al. Nitrate pollution source apportionment, uncertainty and sensitivity analysis across a rural-urban river network based on δ15N/δ18O-N isotopes and SIAR modeling[J]. Journal of Hazardous Materials, 2022, 438: 129480.
DOI
URL
|