地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 121-134.DOI: 10.13745/j.esf.sf.2025.10.7

• 水岩相互作用及效应 • 上一篇    下一篇

离子吸附型稀土矿区水体硝酸盐分布、来源及其转化过程:以江西足洞稀土矿为例

韦春伊1,2(), 余圣品3,4, 白细民3,4, 刘海燕1,2,*(), 王振1,2, 葛勤1,2, 陈功新1,2, 周仲魁1,2, 孙占学1,2, 郭华明5   

  1. 1.东华理工大学 核资源与环境国家重点实验室, 江西 南昌 330013
    2.东华理工大学 水资源与环境工程学院 地下水污染成因与修复江西省重点实验室, 江西 南昌 330013
    3.江西省地质局水文地质大队, 江西 南昌 330224
    4.江西省勘察设计研究院有限公司 南昌市水文地质与优质地下水资源开发利用重点实验室, 江西 南昌 330224
    5.中国地质大学(北京) 水资源与环境学院, 北京 100083
  • 收稿日期:2025-05-10 修回日期:2025-10-20 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *刘海燕(1988—),男,博士,副教授,硕士生导师,主要从事水文地球化学研究。E-mail:hy_liu@ecut.edu.com
  • 作者简介:韦春伊(2001—),女,硕士研究生,主要从事水文地球化学研究。E-mail:Chunyi_Wei@163.com
  • 基金资助:
    国家自然科学基金项目(42262029);国家自然科学基金项目(42302284);江西省自然科学基金项目(20232BAB203066);江西省自然科学基金项目(20232BAB213068);江西省重点研发计划项目(20212BBG71011);南昌市水文地质与优质地下水资源开发利用重点实验室开放课题(20252B21);东华理工大学放射性地质与勘探技术国防重点学科实验室开放基金(2022RGET15)

Distribution, source and transformation of nitrate in water bodies of an ion-adsorption rare earth mining areas: A case study of the Zudong rare earth mine in the Jiangxi Province

WEI Chunyi1,2(), YU Shengpin3,4, BAI Ximin3,4, LIU Haiyan1,2,*(), WANG Zhen1,2, GE Qin1,2, CHEN Gongxin1,2, ZHOU Zhongkui1,2, SUN Zhanxue1,2, GUO Huaming5   

  1. 1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
    2. Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
    3. Hydrogeological Brigade of Jiangxi Geological Bureau, Nanchang 330224, China
    4. Nanchang Key Laboratory of Hydrogeology and High Quality Groundwater Resources Exploitation and Utilization, Jiangxi Institute of Survey & Design LTD., Nanchang 330224, China
    5. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-05-10 Revised:2025-10-20 Online:2026-01-25 Published:2025-11-10

摘要: 离子吸附型稀土矿开采导致矿区水土环境遭受严重的氮污染,但矿山排水影响下水体中硝酸盐(${\mathrm{NO}}_{3}^{-}$-N)的分布、迁移转化过程及污染来源仍缺乏系统研究。以江西赣南足洞离子吸附型稀土矿区下游地表水和地下水为研究对象,结合水化学分析及多同位素技术(δ18O-H2O、δ15N-${\mathrm{NO}}_{3}^{-}$δ18O-${\mathrm{NO}}_{3}^{-}$),研究了水体中${\mathrm{NO}}_{3}^{-}$-N来源及转化过程,并借助 MixSIAR 模型定量评估了各污染源的贡献率。结果表明,区内水体呈弱酸性、低矿化度特征,地表水以SO4-Ca 型为主,80%地下水为 HCO3-Ca 型;地表水的总氮(TN)及${\mathrm{NO}}_{3}^{-}$-N、氨氮(${\mathrm{NH}}_{4}^{+}$-N)浓度显著高于地下水,表明其氮污染与采矿活动密切相关。空间上,氮来源与开矿使用高氨氮卤水密切相关,矿山开采活动对地表水氮污染影响显著。土地利用类型分布表明,地表水和地下水氮的来源不同,地表水氮源主要是林地中的矿山排水,而地下水氮主要来源于耕地上的农业活动。δ18O-H2O、δ15N-${\mathrm{NO}}_{3}^{-}$δ18O-${\mathrm{NO}}_{3}^{-}$同位素组成特征及其分馏系数分析表明,地表水和地下水均以硝化作用为主。利用δ15N-${\mathrm{NO}}_{3}^{-}$δ18O-${\mathrm{NO}}_{3}^{-}$及其重建值进行端元分析显示,SW1的${\mathrm{NO}}_{3}^{-}$-N主要来源于铵态氮,即采矿活动排出的高${\mathrm{NH}}_{4}^{+}$-N水;SW2受到采矿和农业活动的共同影响,其来源包括铵态氮、土壤氮和污水粪肥,GW主要来源于土壤氮和污水粪肥。MixSIAR 定量结果表明,矿山排水对靠近开采区的地表水(即SW1)的${\mathrm{NO}}_{3}^{-}$-N贡献率平均值超过50%,其中65% ~ 94% ${\mathrm{NO}}_{3}^{-}$-N来源于矿山排水中原生${\mathrm{NO}}_{3}^{-}$-N的直接贡献,而在远离开采区的地表水中(即SW2),矿山排水的${\mathrm{NO}}_{3}^{-}$-N贡献值递减至约30%。不确定性分析UI90显示,大气降水的贡献率最为稳定,矿山排水、粪肥污水和土壤氮的贡献率存在较大的变异性。本研究揭示了离子吸附型稀土矿区硝酸盐污染的形成机制,为矿区氮污染的精准管控提供了科学依据。

关键词: 稀土矿, 氮污染, 硝化作用, 贝叶斯同位素混合模型, 分异富集

Abstract:

Mining of ion-adsorption rare earth elements (REEs) has caused severe nitrogen pollution in water and soil. However, the distribution, migration and transformation, and pollution sources of nitrate (${\mathrm{NO}}_{3}^{-}$-N) in water bodies affected by such drainage remains insufficiently studied. This study investigated the origins and transformations of ${\mathrm{NO}}_{3}^{-}$-N in surface water and groundwater downstream of the Zudong ion-adsorption REE mining area in southern Jiangxi, China, using hydrochemical analysis and a multi-isotope (δ18O-H2O,δ15N-${\mathrm{NO}}_{3}^{-}$ and δ18O-${\mathrm{NO}}_{3}^{-}$) approach. The contribution of various sources was quantitatively assessed using the MixSIAR model. The results showed that surface water and groundwater were weakly acidic and were characterized by low TDS values. Surface water was predominantly of the SO4-Ca type, whereas 80% of the groundwater samples were of the HCO3-Ca type. The concentrations of total nitrogen (TN), ${\mathrm{NO}}_{3}^{-}$-N, and ${\mathrm{NH}}_{4}^{+}$-N in surface water were significantly higher than those in groundwater, indicating that nitrogen pollution in surface water was closely related to mining activities. Spatially, nitrogen sources were closely related to mining activities that utilized ammonium-nitrogen-rich brine, which posed a significant nitrogen pollution risk to surface water. Distributions of land-use types indicated that nitrogen sources in surface water differed from those in groundwater. Nitrogen in surface water primarily originated from mine drainage in forested areas, whereas nitrogen in groundwater was mainly derived from agricultural activities on cultivated land. The compositions of δ18O-H2O, δ15N-${\mathrm{NO}}_{3}^{-}$, δ18O-${\mathrm{NO}}_{3}^{-}$ and fractionation coefficients revealed that nitrification was the dominant process in both surface water and groundwater. End-member analysis based on measured and reconstructed δ15N-${\mathrm{NO}}_{3}^{-}$ and δ18O-${\mathrm{NO}}_{3}^{-}$ values suggested that ${\mathrm{NO}}_{3}^{-}$-N in SW1 was primarily derived from ammonium nitrogen discharged from mining activities. In contrast, ${\mathrm{NO}}_{3}^{-}$-N in SW2 was influenced by both mining and agricultural activities, with contributions from ammonium nitrogen, soil nitrogen, and sewage manure. ${\mathrm{NO}}_{3}^{-}$-N in groundwater mainly originated from soil nitrogen and sewage manure. Quantitative assessment using the MixSIAR model indicated that mine drainage contributed over 50% (mean value) of the ${\mathrm{NO}}_{3}^{-}$-N in SW1 (surface water nearest to the mining area). Of this contribution, 65% to 94% originated from the native ${\mathrm{NO}}_{3}^{-}$-N present in the mine drainage; while in surface water farther from the mining area (SW2), mine drainage contributed approximately 30% of the ${\mathrm{NO}}_{3}^{-}$-N. Uncertainty analysis (UI90) showed that the contribution of atmospheric precipitation was the most stable, while the contributions of mine drainage, sewage and manure, and soil nitrogen exhibited significant uncertainty. This research elucidates the formation mechanism of ${\mathrm{NO}}_{3}^{-}$-N pollution in ion-adsorption REE mining areas and provides a scientific basis for the precise prevention and control of nitrogen pollution.

Key words: rare earth mine, nitrogen pollution, nitrification, Bayesian isotope mixture model, fractionation and enrichment

中图分类号: