地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 95-106.DOI: 10.13745/j.esf.sf.2025.10.2

• 水岩相互作用及效应 • 上一篇    下一篇

黄河三角洲高盐地下水中微生物群落结构与环境驱动机制

支传顺(), 胡晓农*(), 白晶, 牧辉, 武显仓, 杨帆, 常文博, 卫如春, 李玉喜   

  1. 济南大学 水利与环境学院, 山东 济南 250022
  • 收稿日期:2025-06-20 修回日期:2025-09-11 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *胡晓农(1962—),男,博士,教授,博士生导师,主要从事海岸带水文地质、岩溶地质方面研究。E-mail: stu_huxn@ujn.edu.cn
  • 作者简介:支传顺(1990—),男,博士,副教授,硕士生导师,主要从事水文地质、水文生物地球化学研究。E-mail: stu_zhics@ujn.edu.cn
  • 基金资助:
    国家自然科学基金项目(42430712);国家自然科学基金项目(42202277);国家自然科学基金项目(42572311);山东省自然科学基金项目(ZR2022QD024);山东省自然科学基金项目(ZR2023QD170);山东省自然科学基金项目(ZR2022QD037);山东省自然科学基金项目(ZR2025MS635);山东省高等学校青创科技支持计划(2023KJ318)

Microbial community structure and environmental driving mechanisms in high-salinity groundwater of the Yellow River Delta

ZHI Chuanshun(), HU Xiaonong*(), BAI Jing, MU Hui, WU Xiancang, YANG Fan, CHANG Wenbo, WEI Ruchun, LI Yuxi   

  1. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
  • Received:2025-06-20 Revised:2025-09-11 Online:2026-01-25 Published:2025-11-10

摘要: 黄河三角洲浅层地下水广泛呈高盐特征,受历史海侵、蒸发浓缩等因素影响,水化学演化复杂,地下水微生物群落演替尚缺乏系统认识。本文采集25组浅层地下水、2组黄河水及1组海水样品,通过水化学分析、稳定同位素示踪与宏基因组测序等方法,识别地下水盐分来源,解析不同盐度条件下微生物群落结构、演替规律及其主控因子。结果表明,地下水TDS变幅为1.0~35.0 g/L,以Cl-Na型水为主,δD、δ18O及Br/Cl比值特征共同指示受海水混合与蒸发浓缩双重作用影响。地下水中微生物群落以细菌为主(相对丰度67.7%~98.6%),古菌次之(1.0%~32.0%),真核生物与病毒占比较低。细菌优势类群包括PseudomonadotaCandidatus Omnitrophota,前者在高盐地下水中富集,后者偏好分布于低盐环境。古菌中Candidatus Woesearchaeota广泛分布,Candidatus LokiarchaeotaCandidatus Thermoprofundales等类群在高盐样品中占据生态优势。PCoA与LEfSe分析表明不同盐度条件下微生物群落显著分化,细菌随盐度变化明显,而古菌具有更强的耐盐适应性。RDA分析表明,TDS、${\mathrm{SO}}_{4}^{2-}$、Fe2+${\mathrm{NH}}_{4}^{+}$是高盐样品的主控因子,${\mathrm{NO}}_{3}^{-}$、pH和ORP对低盐群落影响较大。本研究揭示了高盐地下水中微生物群落的演替特征及其环境驱动机制,为理解滨海地下水系统中盐度胁迫下的微生物响应与生态功能提供了理论支撑。

关键词: 高盐地下水, 黄河三角洲, 微生物群落结构, 宏基因组测序, 同位素示踪

Abstract:

Shallow groundwater in the Yellow River Delta is characterized by high salinity due to historical seawater intrusion and evaporative concentration, which has led to complex hydrochemical evolution. However, the succession of microbial communities under these conditions remains poorly understood. In this study, 25 shallow groundwater samples, two Yellow River water samples, and one seawater sample were collected. Hydrochemical analysis, stable isotope tracing, and metagenomic sequencing were employed to identify salinity sources and to investigate the composition, succession patterns, and controlling factors of microbial communities across a salinity gradient. Results showed that groundwater total dissolved solids (TDS) ranged from 1.0-35.0 g/L, dominated by the Cl-Na water type. Combined evidence from δD and δ18O and Br-/Cl- ratios indicated the dual influence of seawater mixing and evaporative concentration. Microbial communities were dominated by bacteria (67.7%-98.6% relative abundance), followed by archaea (1.0%-32.0%), while eukaryotes and viruses were generally less abundant. Major bacterial groups included Pseudomonadota and Candidatus Omnitrophota, with the former being enriched in high-salinity samples and the latter preferring lower salinity environments. Among archaea, Candidatus Woesearchaeota was widespread, while Candidatus Lokiarchaeota and Candidatus Thermoprofundales showed ecological dominance under high-salinity conditions. Principal coordinates analysis (PCoA) and linear discriminant analysis effect size (LEfSe) revealed distinct microbial community structures across different salinity levels. Bacteria displayed greater sensitivity to salinity variation, whereas archaea exhibited higher salinity tolerance. Redundancy analysis (RDA) indicated that TDS, ${\mathrm{SO}}_{4}^{2-}$, Fe2+, and ${\mathrm{NH}}_{4}^{+}$ were the main factors shaping microbial communities in high-salinity groundwater, while ${\mathrm{NO}}_{3}^{-}$, pH, and ORP were more influential in low-salinity environments. This study reveals the succession patterns and environmental drivers of microbial communities in high-salinity groundwater, providing theoretical insight into microbial responses and ecological functions under salinity stress in coastal aquifer systems.

Key words: high-salinity groundwater, Yellow River Delta, microbial community structure, metagenomic sequencing, isotope tracing

中图分类号: