| [1] |
鲜本忠, 姜在兴. 黄河三角洲地区全新世环境演化及海平面变化[J]. 海洋地质与第四纪地质, 2005, 25(3): 1-7.
|
| [2] |
侯国华, 高茂生, 叶思源, 等. 黄河三角洲浅层地下水盐分来源及咸化过程研究[J]. 地学前缘, 2022, 29(3): 145-154.
DOI
|
| [3] |
成国栋, 薛春汀, 周永青. 黄河三角洲地区晚更新世晚期及全新世地层[J]. 海洋地质与第四纪地质, 1987, 7: 63-73.
|
| [4] |
支传顺, 胡晓农, 陈麟, 等. 微生物对海水入侵响应特征及指示意义的研究进展[J]. 水文地质工程地质, 2024, 51(2): 192-203.
|
| [5] |
LEE E, SHIN D, HYUN S P, et al. Periodic change in coastal microbial community structure associated with submarine groundwater discharge and tidal fluctuation[J]. Limnology and Oceanography, 2017, 62(2): 437-451.
DOI
URL
|
| [6] |
ZHANG X, MIAO J, HU B X, et al. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China)[J]. Environmental Science and Pollution Research, 2017, 24(26): 21073-21090.
DOI
URL
|
| [7] |
ZHANG X, LAN T, JIANG H, et al. Bacterial community driven nitrogen cycling in coastal sediments of intertidal transition zone[J]. Science of the Total Environment, 2024, 908: 168299.
DOI
URL
|
| [8] |
FAN Y, LI Z, LI B, et al. Metagenomic profiles of planktonic bacteria and resistome along a salinity gradient in the Pearl River Estuary, South China[J]. Science of the Total Environment, 2023, 889: 164265.
DOI
URL
|
| [9] |
王焰新, 甘义群, 邓娅敏, 等. 海岸带海陆交互作用过程及其生态环境效应研究进展[J]. 地质科技通报, 2020, 39(1): 1-10.
|
| [10] |
CHEN L, HU B X, DAI H, et al. Characterizing microbial diversity and community composition of groundwater in a salt-freshwater transition zone[J]. Science of the Total Environment, 2019, 678: 574-584.
DOI
URL
|
| [11] |
桑石磊, 黄柏强. 基于基因测序的地下咸水微生物多样性研究[J]. 农技服务, 2021, 38(6): 104-106.
|
| [12] |
UNNO T, KIM J, KIM Y, et al. Influence of seawater intrusion on microbial communities in groundwater[J]. Science of The Total Environment, 2015, 532: 337-343.
DOI
URL
|
| [13] |
ADYASARI D, HASSENRUECK C, OEHLER T, et al. Microbial community structure associated with submarine groundwater discharge in northern Java (Indonesia)[J]. Science of the Total Environment, 2019, 689: 590-601.
DOI
URL
|
| [14] |
董海良. 深地生物圈的最新研究进展以及发展趋势[J]. 科学通报, 2018, 63(36): 3885-3901.
|
| [15] |
MA Z, GAO L, SUN M, et al. Microbial diversity in groundwater and its response to seawater intrusion in Beihai City, southern China[J]. Frontiers in Microbiology, 2022, 13: 876665.
DOI
URL
|
| [16] |
SANG S L, ZHANG X Y, DAI H, et al. Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl River Delta, China[J]. Scientific Reports, 2018, 8: 17317.
DOI
PMID
|
| [17] |
SOLA F, DEL CARMEN VARGAS-GARCIA M, VALLEJOS A. Interrelation prokaryotic community-aquifer in a carbonate coastal environment[J]. Aquatic Sciences, 2020, 82: 13.
DOI
|
| [18] |
HONG Y G, WU J P, WILSON S, et al. Vertical stratification of sediment microbial communities along geochemical gradients of a subterranean estuary located at the gloucester beach of Virginia, United States[J]. Frontiers in Microbiology, 2019, 9: 3343.
DOI
URL
|
| [19] |
CHEN X, SHENG Y, WANG G, et al. Spatiotemporal successions of N, S, C, Fe, and As cycling genes in groundwater of a wetland ecosystem: enhanced heterogeneity in wet season[J]. Water Research, 2024, 251: 121105.
DOI
URL
|
| [20] |
ZHI C, HU X, ZHANG Z, et al. Bacterial and archaeal community successions in high-salinity groundwater and their potential impact on arsenic cycling[J]. Journal of Hydrology, 2025, 653: 132742.
DOI
URL
|
| [21] |
YAO J, YU H J, XU X Y, et al. Paleoenvironmental changes during the Late Quaternary as inferred from foraminifera assemblages in the Laizhou Bay[J]. Acta Oceanologica Sinica, 2014, 33(10): 10-18.
|
| [22] |
PANG Z, KONG Y, LI J, et al. An isotopic geoindicator in the hydrological cycle[C]// Proceedings of the 15th Water-Rock Interaction International Symposium (WRI). Evora, Portugal: Elsevier Procedia, 2016, 17.
|
| [23] |
JOHN T, SCAMBELLURI M, FRISCHE M, et al. Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 65-76.
DOI
URL
|
| [24] |
HOSHINO T, DOI H, URAMOTO G I, et al. Global diversity of microbial communities in marine sediment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(44): 27587-27597.
DOI
PMID
|
| [25] |
LI Y, WANG J, LI E, et al. Shifts in microbial community structure and co-occurrence network along a wide soil salinity gradient[J]. Microorganisms, 2024, 12: 1268.
DOI
URL
|
| [26] |
ZHANG M, XING J, LONG Q, et al. Prokaryotic microbial diversity analysis and preliminary prediction of metabolic function in salt lakes on the Qinghai-Tibet Plateau[J]. Water, 2024, 16: 451.
DOI
URL
|
| [27] |
LANG A S, RISE M L, CULLEY A I, et al. RNA viruses in the sea[J]. FEMS microbiology reviews, 2009, 33(2): 295-323.
DOI
PMID
|
| [28] |
SUTTLE C A. Marine viruses-major players in the global ecosystem[J]. Nature reviews Microbiology, 2007, 5(10): 801-812.
DOI
|
| [29] |
DEBNATH S C, CHAPUT D L, MCMURTRIE J, et al. Seasonal dynamics and factors shaping microbiomes in freshwater finfish earthen aquaculture ponds in Bangladesh[J]. Environmental Microbiome, 2025, 20: 38.
DOI
|
| [30] |
HUANG W C, LIU Y, ZHANG X, et al. Comparative genomic analysis reveals metabolic flexibility of Woesearchaeota[J]. Nature Communications, 2021, 12: 5281.
DOI
|
| [31] |
LIU X B, LI M, CASTELLE C J, et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages[J]. Microbiome, 2018, 6: 102.
DOI
|
| [32] |
MAKK J, TOUMI M, KRETT G, et al. Temporal changes in the morphological and microbial diversity of biofilms on the surface of a submerged stone in the Danube River[J]. Biologia Futura, 2024, 75(3): 261-277.
DOI
PMID
|
| [33] |
王锐, 陈绍兴. 嗜盐古菌几种常见胞外酶研究进展[J]. 微生物学通报, 2021, 48(3): 830-841.
|
| [34] |
崔恒林. 嗜盐古菌分类学研究进展[J]. 微生物学通报, 2016, 43(5): 1113-1122.
|
| [35] |
唐小月, 黄晓雅, 范洋, 等. 稀土矿区典型河岸潜流带微生物群落特征及影响因子[J/OL]. 应用与环境生物学报,1-14[2025-06-20]. https://doi.org/10.19675/j.cnki.1006-687x.2025.01017.
|
| [36] |
左锐, 李桥, 孟利, 等. 地下水波动带中细菌群落结构与水质响应关系[J]. 中国环境科学, 2020, 40(4): 1687-1697.
|
| [37] |
YIN X, CAI M, LIU Y, et al. Subgroup level differences of physiological activities in marine Lokiarchaeota[J]. Isme Journal, 2021, 15(3): 848-861.
DOI
URL
|
| [38] |
ORSI W D, VUILLEMIN A, RODRIGUEZ P, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments[J]. Nature Microbiology, 2020, 5(2): 248-255.
DOI
PMID
|
| [39] |
LIU Y F, YANG L, LIU Z L, et al. Discovery of the non-cosmopolitan lineages in Candidatus Thermoprofundales[J]. Environmental Microbiology, 2022, 24(7): 3063-3080.
DOI
URL
|
| [40] |
ANDRADE K, LOGEMANN J, HEIDELBERG K B, et al. Metagenomic and lipid analyses reveal a diel cycle in a hypersaline microbial ecosystem[J]. Isme Journal, 2015, 9(12): 2697-2711.
DOI
PMID
|
| [41] |
JIANG S, ZHANG Y, JIN J, et al. Organic carbon in a seepage face of a subterranean estuary: turnover and microbial interrelations[J]. Science of The Total Environment, 2020, 725: 138220.
DOI
URL
|
| [42] |
XU M, SAVIO F, KJAERGAARD C, et al. Inorganic bioelectric system for nitrate removal with low N2O production at cold temperatures of 4 and 10 ℃[J]. Water Research, 2025, 274: 123061.
DOI
URL
|
| [43] |
WANG Y, LONG C, YIN L, et al. Effects of simulated acid rain on hydrochemical factors and microbial community structure in red soil aquifers[J]. Rsc Advances, 2024, 14(7): 4482-4491.
DOI
PMID
|
| [44] |
FARJANA N, FURUKAWA H, SUMI H, et al. Effect of fermentation scale on microbiota dynamics and metabolic functions for indigo reduction[J]. International Journal of Molecular Sciences, 2023, 24(19): 14696.
DOI
URL
|
| [45] |
LIU S, HU B, HE Z, et al. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria[J]. Applied Microbiology and Biotechnology, 2015, 99(20): 8587-8596.
DOI
URL
|