

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 80-94.DOI: 10.13745/j.esf.sf.2025.10.12
收稿日期:2025-05-16
修回日期:2025-08-24
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*史浙明(1988—),男,教授,博士生导师,主要从事水文地质研究。E-mail: szm@cugb.edu.cn
基金资助:
SHI Zheming1,*(
), WANG Guangcai1, YAN Rui2, Qi Zhiyu1
Received:2025-05-16
Revised:2025-08-24
Online:2026-01-25
Published:2025-11-10
摘要:
地震水文地质学是研究地震与地下水相互作用的一门学科,与传统水文地质研究不同,其主要关注因地震等地壳运动产生的含水介质变形而导致的地下水文过程演化。本文从地壳变形与地下水动态、地震地下水前兆异常、地震引起的同震及震后响应以及地震导致的水文地质参数变化等方面进行综述,重点介绍了近二十年以来的进展。线孔弹性理论的发展为定量刻画地震等地壳运动与地下水动态的关系提供了理论基础。地下流体前兆异常在近年来的地震预测实践中起到了较好的参考作用,其中地下水地球化学指标监测及大规模地球化学观测网络的建设是一大亮点。与此同时,建立地下水物理与化学动态的前兆异常耦合机理模型以及发展机器学习等新兴的前兆信号提取方法是未来需要重点突破的方向。地震引起的含水层介质渗透性的改变及其导致的水量交换和水化学的动态变化是解释同震及震后地下水响应的主要机理,基于地下水对潮汐、气压等周期性信号响应的含水层参数识别为连续获取水文地质参数提供了新途径,然而现有潮汐和气压响应的解析模型在参数计算方面往往存在多解性问题,发展新的模型和方法以降低计算结果的不确定性是未来需要考虑的方向。为了更好地理解地震与地下水系统间的相互作用,在前期研究基础上建立涵盖温泉、地下水监测井的断裂带试验场,开展水位、水温、流量、化学组分、形变及地震波的综合观测,是深化地震水文地质学科理论发展的基础。
中图分类号:
史浙明, 王广才, 晏锐, 齐之钰. 地震水文地质学:基于灾害视角的“水岩相互作用”[J]. 地学前缘, 2026, 33(1): 80-94.
SHI Zheming, WANG Guangcai, YAN Rui, Qi Zhiyu. Earthquake hydrogeology: Water rock interaction from a disaster per-spective[J]. Earth Science Frontiers, 2026, 33(1): 80-94.
| [1] | 王大纯, 张人权, 史虹毅, 等. 水文地质学基础[M]. 北京: 地质出版社, 1993. |
| [2] | 车用太, 鱼金子. 地震地下流体[M]. 北京: 气象出版社, 2006. |
| [3] | 汪成民, 车用太, 万迪堃, 等. 地下水微动态研究[M]. 北京: 地震出版社, 1988. |
| [4] | 张卉, 王广才, 史浙明, 等. 基于地下水位微动态反演含水层水文地质参数研究进展[J]. 地质科技通报, 2023, 42(4): 138-146. |
| [5] | 刘耀炜, 陈华静, 车用太. 我国地震地下流体观测研究40年发展与展望[J]. 国际地震动态, 2006(7): 3-12. |
| [6] |
ROELOFFS E A, QUILITY E. Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake[J]. Pure and Applied Geophysics, 1997, 149: 21-60.
DOI URL |
| [7] | 晏锐, 田雷, 王广才. 2008年汶川8.0级地震前地下流体异常回顾与统计特征分析[J]. 地球物理学报, 2018, 61(5): 261-275. |
| [8] |
RICE J R, CLEARY M P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Reviews of Geophysics, 1976, 14(2): 227-241.
DOI URL |
| [9] |
McMILLAN T C, GABRIEL C R, WENDY A T, et al. Utilizing the impact of Earth and atmospheric tides on groundwater systems: a review reveals the future potential[J]. Reviews of Geophysics, 2019, 57(2): 281-315.
DOI URL |
| [10] | ROELOFFS E A. Poroelastic techniques in the study of earthquake related hydrologic phenomena[J]. Advances in Geophysics, 1996, 37: 135-195. |
| [11] |
WANG C Y, DOAN M L, XUE L, et al. Tidal response of groundwater in a leaky aquifer: application to Oklahoma[J]. Water Resources Research, 2018, 54(10): 8019-8033.
DOI URL |
| [12] |
ROJSTACZER S. Determination of fluid flow properties from the response of water levels in wells to atmospheric loading[J]. Water Resources Research, 1988, 24(11): 1927-1938.
DOI URL |
| [13] | QI Z, SHI Z, RASUMSSEN T, et al. Investigating the representative of aquifer transmissivity determined by passive response methods: a comparison with time-dependent hydraulic parameters inferred from different stages of pumping tests[J]. Water Resources Research, 2024, 60(2): e2022WR033952. |
| [14] |
COOPER H H BREDEHOEFT, PAPADOPULOS, et al. The response of well-aquifer systems to seismic waves[J]. Journal of Geophysical Research, 1965, 70: 3915-3926.
DOI URL |
| [15] | SUN X, SHI Z, XIANG Y. Frequency dependence of In Situ transmissivity estimation of well-aquifer systems from periodic loadings[J]. Water Resources Research, 2020, 56(11): e2020WR027536. |
| [16] | 王广才, 沈照理, 地震地下水动态监测与地震预测[J]. 自然杂志, 2010, 32: 90-93. |
| [17] |
SHALEV E, KURZON I, DOAN M L, et al. Water-level oscillations caused by volumetric and deviatoric dynamic strains[J]. Geophysical Journal International, 2016, 204(2): 841-851.
DOI URL |
| [18] | WANG C Y, CHIA Y P, WANG L, et al. Role of S waves and Love waves in coseismic permeability enhancement[J]. Geophysical Research Letters, 2009, 36(9): L09404. |
| [19] |
COX S, RUTTER H, SIMS A, et al. Hydrological effects of the Mw 7.1 Darfield (Canterbury) earthquake, 4 September 2010, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(3): 231-247.
DOI URL |
| [20] |
SHI Z, WANG G, LIU C. Co-seismic groundwater level changes induced by the May 12, 2008 Wenchuan earthquake in the near field[J]. Pure and Applied Geophysics, 2013, 170(11): 1773-1783.
DOI URL |
| [21] | 刘成龙, 王广才, 张卫华, 等. 三峡井网井水位对汶川8.0级地震的同震响应特征研究[J]. 地震学报, 2009, 31: 188-194. |
| [22] | 杨竹转, 邓志辉, 刘春国, 等. 中国大陆井水位与水温动态对川MS 8.0地震的同震响应特征分析[J]. 地震地质, 2008, 30: 895-905. |
| [23] |
SHI Z M, WANG G C, MANGA M, et al. Mechanism of co-seismic water level change following four great earthquakes: insights from co-seismic responses throughout the Chinese mainland[J]. Earth and Planetary Science Letters, 2015, 430: 66-74.
DOI URL |
| [24] | MANGA M, BERESNEV I, BRODSKY E E, et al. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms[J]. Reviews of Geophysics, 2012, 50(2): RG2004. |
| [25] | WANG C Y, MANGA M. Water and earthquake. Lecture notes in Earth system sciences[M]. Cham: Springer, 2021. |
| [26] |
GE S M, STOVER S C. Hydrodynamic response to strike-and dip-slip faulting in a half-space[J]. Journal of Geophysical Research, 2000, 105(B11): 25513-25524.
DOI URL |
| [27] | WANG C Y, CHIA Y. Mechanism of water level changes during earthquakes: near field versus intermediate field. Geophysical Research Letters, 2008, 35(12): L12402. |
| [28] |
ELKHOURY J E, BRODSKY E E, AGNEW D C. Seismic waves increase permeability[J]. Nature, 2006, 441(29): 1135-1138.
DOI |
| [29] |
LIAO X, WANG C Y, LIU C P. Disruption of groundwater systems by earthquakes[J]. Geophysical Research Letters, 2015, 42(22): 9758-9763.
DOI URL |
| [30] | ZHANG Y, WANG C Y, FU L, et al. Are deep aquifers really confined? Insights from deep groundwater tidal responses in the North China Platform[J]. Water Resources Research, 2021, 57: e2021WR030195. |
| [31] |
YAN R, WANG G C, SHI Z. Sensitivity of hydraulic properties to dynamic strain within a fault damage zone[J]. Journal of Hydrology, 2016, 543: 721-728.
DOI URL |
| [32] |
SHI Z M, ZHANG S C, YAN R, et al. Fault zone permeability decrease following large earthquakes in a hydrothermal system[J]. Geophysical Research Letters, 2018, 45(3): 1387-1394.
DOI URL |
| [33] |
XUE L, LI H B, BRODSKY E E, et al. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone[J]. Science, 2013, 340(6140): 1555-1559.
DOI PMID |
| [34] | ELKHOURY J E, NIEMEIJER A, BRODSKY E E, et al. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock[J]. Journal of Geophysical Research, 2011, 116(B2):B02311. |
| [35] | FAORO I D, ELSWORTH D, MARONE C. Permeability evolution during dynamic stressing of dual permeability media[J]. Journal of Geophysical Research, 2012, 117: B01310. |
| [36] |
CANDELA T, BRODSKY E E, MARONE C, et al. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing[J]. Earth and Planetary Science Letters, 2014, 392: 279-291.
DOI URL |
| [37] |
WANG C Y, BARBOUR A J. Influence of pore pressure change on coseismic volumetric strain[J]. Earth and Planetary Science Letters, 2017, 475: 152-159.
DOI URL |
| [38] | FLEEGER, G M, GOODE D J, BUCKWALTER T F, et al. Hydrologic effects of the Pymatuning earthquake of September 25, 1998, in northwestern Pennsylvania[R]. New Cumberland: US Department of the Interior, US Geological Survey, 1999. |
| [39] |
WANG C Y, WANG C H, MANGA M. Coseismic release of water from mountains evidence from the 1999 (Mw = 7.5) Chi-Chi, Taiwan, earthquake[J]. Geology, 2004, 32(9): 769-772.
DOI URL |
| [40] |
WANG C Y, MANGA M. New streams and springs after the 2014 M 6.0 South Napa earthquake[J]. Nature Communications, 2015, 6: 7597.
DOI |
| [41] |
ZHANG H, SHI Z M, WANG G C, et al. Large earthquake reshapes the groundwater flow system: insight from the water-level response to Earth tides and atmospheric pressure in a deep well[J]. Water Resources Research, 2019, 55(5): 4207-4219.
DOI URL |
| [42] |
SHI Z M, WANG G C, MANGA M, et al. Continental-scale water-level response to a large earthquake[J]. Geofluids, 2015, 15(1/2): 310-320.
DOI URL |
| [43] | SHI Z M, WANG G C. Hydrological response to multiple large distant earthquakes in the Mile well, China[J]. Journal of Geophysical Research, 2014, 119(11): 2448-2459. |
| [44] |
MOGI K, MOCHIZUKI H, KUROKAWA Y. Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes[J]. Tectonophysics, 1989, 159(1): 95-108.
DOI URL |
| [45] |
KITAGAWA Y, KOIZUMI N, TSUKUDA T. Comparison of postseismic groundwater temperature changes with earthquake-induced volumetric strain release: Yudani Hot Spring, Japan[J]. Geophysical Research Letters, 1996, 23(22): 3147-3150.
DOI URL |
| [46] |
COX S C, MENZIES C D, SUTHERLAND R, et al. Changes in hot spring temperature and hydrogeology of the Alpine fault hanging wall, New Zealand, induced by distal South Island earthquakes[J]. Geofluids, 2015, 15: 216-239.
DOI URL |
| [47] | YAN X, SHI Z M, ZHOU P P, et al. Modeling earthquake-induced spring discharge and temperature changes in a fault zone hydrothermal system[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7): e2020JB019344. |
| [48] |
HE A, SINGH R. Coseismic groundwater temperature response associated with the Wenchuan earthquake[J]. Pure and Applied Geophysics, 2020, 177:109-120.
DOI |
| [49] |
ZHANG S, SHI Z M, WANG G C, et al. The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations[J]. Hydrology and Earth System Sciences, 2023, 27(2): 401-415.
DOI URL |
| [50] | 石耀霖, 曹建玲, 马丽, 等. 唐山井水温的同震变化及其物理解释[J]. 地震学报, 2007, 29(3): 265-273. |
| [51] |
ROJSTACZER S, WOLF S. Permeability changes associated with large earthquakes: an example from Loma-Prieta, California[J]. Geology, 1992, 20(3): 211-214.
DOI URL |
| [52] |
CLAESSON L, SKELTON C, GRAHAM C, et al. Hydrogeochemical changes before and after a major earthquake[J]. Geology, 2004, 32(8): 641-644.
DOI URL |
| [53] |
HOSONO T, YAMADA C, MANGA M, et al. Stable isotopes show that earthquakes enhance permeability and release water from mountains[J]. Nature Communications, 2020, 11: 2776.
DOI PMID |
| [54] |
HOSONO T, HARTMANN J, LOUVAT P, et al. Earthquake-induced structural deformations enhance long-term solute fluxes from active volcanic systems[J]. Scientific Reports, 2018, 8:14809.
DOI PMID |
| [55] |
SHI Z M, ZHANG H, WANG G C. Groundwater trace elements change induced by M 5.0 earthquake in Yunnan[J]. Journal of Hydrology, 2020, 581: 124424.
DOI URL |
| [56] | KUMAR S, MANGA M, NAIR A M, et al. Water geochemistry and stable isotope changes record groundwater mixing after a regional earthquake in Northeast India[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(7): e2024GC011476. |
| [57] |
ZHANG L, GUO L, ZHOU X, et al. Temporal variations in stable isotopes and synchronous earthquake-related changes in hot springs[J]. Journal of Hydrology, 2021, 599: 126316.
DOI URL |
| [58] |
ZHANG L, GUO L, WANG Y, et al. Continuous monitoring of hydrogen and oxygen stable isotopes in a hot spring: significance for distant earthquakes[J]. Applied Geochemistry, 2020, 112: 104488.
DOI URL |
| [59] |
LI B, SHI Z M, WANG G C, et al. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault Zone, Western China[J]. Journal of Hydrology, 2019, 579: 124175.
DOI URL |
| [60] | LIU W, SHI Z M, BAI Y, et al. Investigating the mechanisms of earthquake-induced groundwater radon changes in a hot spring-insight from coupled flow rates, water temperature, and radon observation[J]. Journal of Geophysical Research: Solid Earth, 2025, 130(4): e2024JB030878. |
| [61] |
BREDEHOEFT J D. Response of well-aquifer systems to Earth tides[J]. Journal of Geophysical Research, 1967, 72(12): 3075-3087.
DOI URL |
| [62] |
Cooper H H, BREDEHOEFT J D, PAPADOUPULOS I, et al. The response of well-aquifer systems to seismic waves[J]. Journal of Geophysical Research, 1965, 70(16): 3915-3926.
DOI URL |
| [63] |
HSIEH P A, BREDEHOEFT J D, FARR J M. Determination of aquifer transmissivity from Earth tide analysis[J]. Water Resources Research, 1987, 23: 1824-1832.
DOI URL |
| [64] | ZHANG H, SHI Z M, WANG G C, et al. Different sensitivities of earthquake-induced water level and hydrogeological property variations in two aquifer systems[J]. Water Resources Research, 2021, 57: e2020WR028217. |
| [65] | ZHANG Y, MANGA M, FU L, et al. Long- and short-term effects of seismic waves and coseismic pressure changes on fractured aquifers[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(3): e2023JB027970. |
| [66] | ZHANG Y, MANGA M, FU L, et al. Changes of hydraulic transmissivity orientation induced by tele-seismic waves[J]. Water Resources Research, 2022, 58(11): e2022WR033272. |
| [67] |
RAU G, TIMOTHY C, MARTIN S, et al. In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides[J]. Hydrology and Earth System Sciences, 2022, 26: 4301-4321.
DOI URL |
| [68] |
VALOIS R, RIVIERE A, VOUILLAMOZ J M, et al. Use of atmospheric tides to estimate the hydraulic conductivity of confined and semi-confined aquifers[J]. Hydrogeology Journal, 2023, 31(8): 2115-2128.
DOI |
| [69] | VALOIS R, RAU G, VOUILLAMOZ J M, et al. Estimating hydraulic properties of the shallow subsurface using the groundwater response to Earth and atmospheric tides: a comparison with pumping tests[J]. Water Resources Research, 2022, 58(5): e2021WR031666. |
| [70] | SPANE F. Considering barometric pressure in groundwater flow investigations[J]. Water Resources Research, 2022, 38(6):14-11-14-18. |
| [71] |
QI Z, SHI Z M, RASMUSSEN T C. Time- and frequency-domain determination of aquifer hydraulic properties using water-level responses to natural perturbations: a case study of the Rongchang well, Chongqing, southwestern China[J]. Journal of Hydrology, 2023, 617: 128820.
DOI URL |
| [72] | HE G R, SHI Z M, RASMUSSEN T C, et al. Fault zone hydraulic parameter estimation by passive methods using natural forces[J]. Water Resources Research, 2023, 59(2): e2022WR033377. |
| [73] |
HUSSEIN M E, ODLING N E, CLARK R A. Borehole water level response to barometric pressure as an indicator of aquifer vulnerability[J]. Water Resources Research, 2013, 49(10): 7102-7119.
DOI URL |
| [74] |
刘伟, 白细民, 吕少杰, 等. 基于井水位气压效应计算含水层的水力参数[J]. 地震地质, 2023, 45(3): 652-667.
DOI |
| [75] |
DAVID K, TIMMS W, BARBOUR L, et al. Tracking changes in the specific storage of overburden rock during Longwall Coal Mining[J]. Journal of Hydrology, 2017, 553:304-320.
DOI URL |
| [76] | QU S, SHI Z M, WANG G C, et al. Detection of hydrological responses to longwall mining in an overburden aquifer[J]. Journal of Hydrology, 2021,603: 126919. |
| [77] | GUO H, BRODSKY E E, GEOBEL T, et al. Measuring fault zone and host rock hydraulic properties using tidal responses[J]. Geophysical Research Letters, 2021, 48(13): e2021GL093986. |
| [78] | 史浙明, 叶海龙, 吕少杰, 等. 断裂带水力特性研究进展[J]. 地质科技通报, 2023, 42(4): 47-54. |
| [79] |
ZHANG Y, CHU B, HUANG T, et al. Using the tidal response of groundwater to assess and monitor caprock confinement in CO2 geological sequestration[J]. Water, 2024, 16(6): 868.
DOI URL |
| [80] | 孙小龙, 王俊, 向阳, 等. 基于《中国震例》的地下流体异常特征统计分析[J]. 地震, 2016, 36(4): 120-130. |
| [81] | 刘耀炜, 任宏微, 张磊, 等. 鲁甸6.5级地震地下流体典型异常与前兆机理分析[J]. 地震地质, 2015, 37(1): 307-318. |
| [82] | 孙小龙, 刘耀炜, 付虹, 等. 我国地震地下流体学科分析预报研究进展回顾[J]. 地震研究, 2020, 43(2): 216-231. |
| [83] | 刘磊, 高小其, 苏维刚, 等. 2022年1月8日门源MS 6.9地震前青海地区地下流体群体异常特征[J]. 地震学报, 2022, 44(2): 245-249. |
| [84] | 宋春燕, 宋治平, 魏芸芸, 等. 2024年新疆乌什7.1级地震前兆异常特征及预测过程[J]. 中国地震, 2024, 40(3): 551-562. |
| [85] |
SKELTON A, ANDREN M, KRISTMANNSDOTTIR H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7: 752-756.
DOI |
| [86] | ONDA S, SANO Y, TAKAHATA N, et al. Groundwater oxygen isotope anomaly before the M 6.6 Tottori earthquake in Southwest Japan[J]. Scientific Report, 2018, 8: 4800. |
| [87] |
MARTINELLI G, DADOMO A. Factors constraining the geographic distribution of earthquake geochemical and fluid-related precursors[J]. Chemical Geology, 2017, 469: 176-184.
DOI URL |
| [88] | CARACAUSI A, ITALIANO F, MARTINELLI G, et al. Long-term geochemical monitoring and extensive/compressive phenomena: case study of the Umbria region (Central Apennines, Italy)[J]. Annals of Geophysics, 2005, 48: 43-53. |
| [89] |
ITALINO F, BONFANTI P, DITTA M, et al. Helium and carbon isotopes in the dissolved gases of Friuli region (NE Italy): geochemical evidence of CO2 production and degassing over a seismically active area[J]. Chemical Geology, 2009, 266(1): 76-85.
DOI URL |
| [90] |
HILTON D R, FISCHER T P, KULONGOSKI J T. Introduction to the special issue on frontiers in gas geochemistry[J]. Chemical Geology, 2013, 339: 1-3.
DOI URL |
| [91] |
ROSEN M R, BINDA G, ARCHER C, et al. Mechanisms of earthquake-induced chemical and fluid transport to carbonate groundwater springs after earthquakes[J]. Water Resources Research, 2018, 54(8): 5225-5244.
DOI URL |
| [92] |
BARBERIO M D, BARBIERI M, BILL A, et al. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy)[J]. Scientific Reports, 2017, 7(1): 11735.
DOI PMID |
| [93] |
ROQUES C, WEBER U, BRIXEL B, et al. In situ observation of helium and argon release during fluid-pressure-triggered rock deformation[J]. Scientific Reports, 2020, 10(1): 1-9.
DOI |
| [94] |
MATSUMOTO N, KOIZUMI N. Recent hydrological and geochemical research for earthquake prediction in Japan[J]. Natural Hazards, 2013, 69(2): 1247-1260.
DOI URL |
| [95] |
WANG S J, LIN Y Y, CHEN Y H, et al. Integration of multiple observations for validation of mechanisms of earthquake-triggered groundwater level Anomalies: 2016 Taiwan Meinong earthquake[J]. Journal of Hydrology, 2024, 645: 132230.
DOI URL |
| [96] |
MASTRORILLO L, SAROLI M, VIAROLI S, et al. Sustained post-seismic effects on groundwater flow in fractured carbonate aquifers in central Italy[J]. Hydrological Processes, 2020, 34(5): 1167-1181.
DOI URL |
| [97] |
HOSONO T, YAMADA C, SHIBATA Y, et al. Coseismic groundwater drawdown along crustal ruptures during the 2016 Mw 7.0 Kumamoto earthquake[J]. Water Resources Research, 2019, 55(7): 5891-5903.
DOI URL |
| [98] |
BARSUKOV V L, SEREBRENNIKOV V S, BELYAEV A A, et al. Some experience in unraveling geochemical earthquake precursors[J]. Pure and Applied Geophysics, 1984/1985, 122: 157-163.
DOI URL |
| [99] |
THOMAS D. Geochemical precursors to seismic activity[J]. Pure and Applied Geophysics, 1988, 126(2/3/4): 241-266.
DOI URL |
| [100] |
WANG C M. Groundwater studies for earthquake prediction in China[J]. Pure and Applied Geophysics, 1984, 122: 215-217.
DOI URL |
| [101] |
WAKITA H, NAKAMURA Y, SANO Y. Short-term and intermediate-term geochemical precursors[J]. Pure and Applied Geophysics, 1988, 126(2/3/4): 267-278.
DOI URL |
| [102] |
TSUNOGAI U, WAKITA H. Precursory chemical changes in ground water: Kobe earthquake, Japan[J]. Science, 1995, 269(5220): 61-63.
PMID |
| [103] |
SHI Z M, WANG G C, LIU C L, et al. Tectonically induced anomalies without large earthquake occurrences[J]. Pure and Applied Geophysics, 2018, 175(7): 2513-2526.
DOI |
| [104] | 车用太, 鱼金子, 刘成龙, 等. 判别地下水异常的干扰性与前兆性的原则及其应用实例[J]. 地震学报, 2011, 33(6): 800-808. |
| [105] |
BIAGI P, ERIMI A, KINGSLEY S P, et al. Possible precursors in groundwater ions and gases content in Kamchatka (Russia)[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2000, 25(3): 295-305.
DOI URL |
| [106] | BIAGI P, PICCOLO R, ERMINI A, et al. Hydrogeochemical precursors of strong earthquakes in Kamchatka: further analysis[J]. Natural Hazards and Earth System Sciences, 2001, 1: 9-14. |
| [107] |
HARTMANN J, BERNER Z, STUBEN D, et al. A statistical procedure for the analysis of seismotectonically induced hydrochemical signals: a case study from the Eastern Carpathians, Romania[J]. Tectonophysics, 2005, 405(1/2/3/4): 77-98.
DOI URL |
| [108] |
TORKAR D, ZMAZEK B, VAUPOTIC J, et al. Application of artificial neural networks in simulating radon levels in soil gas[J]. Chemical Geology, 2010, 270(1): 1-8.
DOI URL |
| [109] |
ZHANG S C, SHI Z M, WANG G C, et al. Groundwater radon precursor anomalies identification by decision tree method[J]. Applied Geochemistry, 2020, 121: 104696.
DOI URL |
| [110] |
ZHANG S C, SHI Z M, WANG G C, et al. Application of the extreme gradient boosting method to quantitatively analyze the mechanism of radon anomalous change in Banglazhang hot spring before the Lijiang Mw 7.0 earthquake[J]. Journal of Hydrology, 2022, 612: 128249.
DOI URL |
| [111] |
YAN X, SHI Z M, WANG G C, et al. Detection of possible hydrological precursor anomalies using long short-term memory: a case study of the 1996 Lijiang earthquake[J]. Journal of Hydrology, 2021, 599:126369.
DOI URL |
| [112] |
FENG X, ZHONG J, YAN R, et al. Groundwater radon precursor anomalies identification by EMD-LSTM Model[J]. Water, 2022, 14(1): 69.
DOI URL |
| [113] | ZHU R, YANG F, ZHOU X, et al. Anomaly detection using machine learning in hydrochemical data from hot springs: implications for earthquake prediction[J]. Water Resources Research, 2024, 60(6): e2023WR034748. |
| [114] | MANGA M, WANG C Y. Earthquake hydrology[M]//Treatise on geophysics. Amsterdam: Elsevier, 2015:314. |
| [115] | 李营, 陈志, 胡乐, 等. 流体地球化学进展及其在地震预测研究中的应用[J]. 科学通报, 2022, 67: 1404-1420 |
| [116] | LU C, ZHOU X, CHEN Z, et al. Earthquake geochemical scientific expedition and research[J]. Earthquake Research Advances, 2023, 3(4): 58-64. |
| [1] | 陈运泰. 特大地震及其引发的超级海啸的启示[J]. 地学前缘, 20140101, 21(1): 120-131. |
| [2] | 万天丰. 论构造地质学和大地构造学的几个重要问题[J]. 地学前缘, 20140101, 21(1): 132-149. |
| [3] | 刘远征, 马瑾, 马文涛. 探讨紫坪铺水库在汶川地震发生中的作用[J]. 地学前缘, 20140101, 21(1): 150-160. |
| [4] | 文章, 李一鸣, 郭绪磊, 万坦, 罗清树, 周宏. 葛洲坝库区裂隙河岸地表水-地下水交互特征[J]. 地学前缘, 2026, 33(1): 1-13. |
| [5] | 郭记菊, 曹文庚, 鲁重生, 王哲, 朱静思, 王妍妍, 李祥志, 马翠艳. 鲁北平原浅层地下水锰空间演化及成因机制[J]. 地学前缘, 2026, 33(1): 107-120. |
| [6] | 王芮, 蒋小伟, 姬韬韬. 镁同位素示踪陆地水体水岩作用:研究进展与展望[J]. 地学前缘, 2026, 33(1): 143-151. |
| [7] | 赵勇胜. 地下水污染羽的演变规律及其状态评判[J]. 地学前缘, 2026, 33(1): 152-162. |
| [8] | 姜凤, 周金龙, 周殷竹, 刘江涛, 曾妍妍, 刘钰, 丁启振. 哈密盆地绿洲区地下水污染预警研究[J]. 地学前缘, 2026, 33(1): 179-192. |
| [9] | 张博爱奇, 赵朝锐, 祝坤, 郭秋芝, 陈男, 冯传平, 胡瑜恬. 铁碳微电解耦合聚乙烯醇-海藻酸钠固定化强化地下水硫酸盐去除:功能群落调控与硫闭环回收[J]. 地学前缘, 2026, 33(1): 193-206. |
| [10] | 曲辞晓, 王明玉. 裂隙介质VOCs传输扩散通量高效预测建模框架及突破点探析[J]. 地学前缘, 2026, 33(1): 207-221. |
| [11] | 张梦凡, 蔡绪贻. 含硅水铁矿对没食子酸和铜绿假单胞菌还原地下水中Cr(VI)动力学影响[J]. 地学前缘, 2026, 33(1): 236-249. |
| [12] | 刘亚洁, 李江, 王学刚, 柯平超, 孙占学. 酸性铀污染地下水原位生物修复技术:进展与挑战[J]. 地学前缘, 2026, 33(1): 250-268. |
| [13] | 许天福, 李思源, 姜振蛟. 融合微地震与水文数据的深部地热储层裂隙结构表征技术研究进展[J]. 地学前缘, 2026, 33(1): 269-282. |
| [14] | 许林, 马海春, 王京平, 张庆, 黄逸航, 钱家忠, 王万林. 高地应力高温条件裂隙介质地下水非线性渗流研究进展[J]. 地学前缘, 2026, 33(1): 313-327. |
| [15] | 蒲俊兵. 岩溶地下水系统的碳循环[J]. 地学前缘, 2026, 33(1): 369-383. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||