地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 80-94.DOI: 10.13745/j.esf.sf.2025.10.12

• 水岩相互作用及效应 • 上一篇    下一篇

地震水文地质学:基于灾害视角的“水岩相互作用”

史浙明1,*(), 王广才1, 晏锐2, 齐之钰1   

  1. 1.中国地质大学(北京) 地下水循环与环境演化教育部重点实验室, 北京 100083
    2.中国地震台网中心, 北京 100045
  • 收稿日期:2025-05-16 修回日期:2025-08-24 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *史浙明(1988—),男,教授,博士生导师,主要从事水文地质研究。E-mail: szm@cugb.edu.cn
  • 基金资助:
    国家自然科学基金项目(42472315)

Earthquake hydrogeology: Water rock interaction from a disaster per-spective

SHI Zheming1,*(), WANG Guangcai1, YAN Rui2, Qi Zhiyu1   

  1. 1. MOE Key Laboratory of Groundwater Circulation and Environmental Evolution,China University of Geosciences (Beijing),Beijing 100083,China
    2. China Earthquake Network Center,Beijing 100045,China
  • Received:2025-05-16 Revised:2025-08-24 Online:2026-01-25 Published:2025-11-10

摘要:

地震水文地质学是研究地震与地下水相互作用的一门学科,与传统水文地质研究不同,其主要关注因地震等地壳运动产生的含水介质变形而导致的地下水文过程演化。本文从地壳变形与地下水动态、地震地下水前兆异常、地震引起的同震及震后响应以及地震导致的水文地质参数变化等方面进行综述,重点介绍了近二十年以来的进展。线孔弹性理论的发展为定量刻画地震等地壳运动与地下水动态的关系提供了理论基础。地下流体前兆异常在近年来的地震预测实践中起到了较好的参考作用,其中地下水地球化学指标监测及大规模地球化学观测网络的建设是一大亮点。与此同时,建立地下水物理与化学动态的前兆异常耦合机理模型以及发展机器学习等新兴的前兆信号提取方法是未来需要重点突破的方向。地震引起的含水层介质渗透性的改变及其导致的水量交换和水化学的动态变化是解释同震及震后地下水响应的主要机理,基于地下水对潮汐、气压等周期性信号响应的含水层参数识别为连续获取水文地质参数提供了新途径,然而现有潮汐和气压响应的解析模型在参数计算方面往往存在多解性问题,发展新的模型和方法以降低计算结果的不确定性是未来需要考虑的方向。为了更好地理解地震与地下水系统间的相互作用,在前期研究基础上建立涵盖温泉、地下水监测井的断裂带试验场,开展水位、水温、流量、化学组分、形变及地震波的综合观测,是深化地震水文地质学科理论发展的基础。

关键词: 地震, 地下水, 含水层参数, 地球潮汐, 气压, 前兆异常

Abstract:

Earthquake hydrogeology studies the interaction between earthquakes and groundwater. Unlike traditional hydrogeology, it mainly focuses on the evolution of groundwater hydrological processes caused by earthquake-induced aquifer property changes. This paper provides a comprehensive review of groundwater co-seismic and post-seismic responses, and the characterization of earthquake-induced hydrogeological property changes, with a focus on advancements over the past two decades. The development of linear poroelastic theory has established a theoretical foundation for quantitatively interpreting the dynamic relationships between crustal movements (e. g., earthquakes) and groundwater. Subsurface fluid precursor anomalies have served as valuable supplementary tools in recent earthquake forecasting efforts. Notable developments in this area include enhanced monitoring of groundwater geochemical indicators and the construction of large-scale geochemical observation networks. Nevertheless, key future challenges involve: ① establishing mechanistic models of precursor anomalies that couple physical and chemical groundwater dynamics, and ② developing precursor signal identification methodologies such as machine learning. Earthquake-induced permeability changes of aquifer systems, leading to dynamic changes in water exchange and hydrochemistry, are the most plausible mechanism explaining co-seismic and post-seismic groundwater responses. Aquifer parameter identification based on groundwater responses to periodic signals (e. g., Earth tides and barometric pressure) offers new pathways for the continuous acquisition of hydrogeological parameters. However, existing analytical models for tidal and barometric responses are often plagued by the problem of non-uniqueness in parameter estimation. Reducing uncertainty in computed results through novel models and methods remains a critical future direction. Finally, to advance the understanding of earthquake-groundwater system interactions, establishing fault-zone observatories that integrate thermal springs and groundwater monitoring wells is essential. Equipped to measure water level, temperature, flow rate, chemical composition, crustal deformation, and seismic waves, these observatories, built upon prior research, are essential for deepening the theoretical foundations of earthquake hydrogeology.

Key words: earthquake, groundwater, aquifer parameters, Earth tide, barometric pressure, precursor anomalies

中图分类号: