地学前缘 ›› 2021, Vol. 28 ›› Issue (2): 106-124.DOI: 10.13745/j.esf.sf.2020.9.12
收稿日期:
2020-06-29
修回日期:
2020-09-20
出版日期:
2021-03-25
发布日期:
2021-04-03
作者简介:
王玉峰(1986—),女,副研究员,主要从事地质工程专业研究。E-mail: wangyufeng1987118@126.com
基金资助:
WANG Yufeng(), CHENG Qiangong, LIN Qiwen, LI Kun, SHI Anwen
Received:
2020-06-29
Revised:
2020-09-20
Online:
2021-03-25
Published:
2021-04-03
摘要:
高速远程滑坡运动学机理是国际工程地质领域亟待解决的重大前沿性关键科学问题。为探索高速远程滑坡的运动学机理,以青藏高原不同构造背景下的三大高速远程滑坡为研究对象,通过现场工程地质调查与分析,详细探讨了滑坡运动路径上所揭露出的各种表面与剖面沉积学特征,结果显示:(1)沿滑坡运动路径上依次可见大型堆积平台、纵向脊、横向脊、堆积丘等表面沉积学地貌的规律性分布,根据各类地貌的空间分布特征,可将滑坡区自后向前划分为源区、流通区和堆积区;(2)剖面上则可见反粒序堆积结构的展布,自上而下依次可划分为硬壳层、主体层和基底层,在硬壳层和主体层中可见层序保留、拼贴构造等低扰动性沉积学特征分布,在基底层中则可见其与下伏原沟谷堆积层强相互作用形成的底辟构造、小型褶皱等剖面沉积学特征分布。基于高速远程滑坡运动路径上各类表面和剖面沉积学地貌的空间展布特征,初步提出青藏高原关键地带高速远程滑坡的运动与停积就位机制,即滑体自源区失稳后主体表现为一种快速的低扰动性的整体性剪切运动过程,其流通区以快速拉张运动为主,堆积区则以快速推挤运动为主;当滑体下伏层中含水量较高时,伴随着滑体底部摩阻力的迅速降低,滑体表现出明显的侧限扩离运动。
中图分类号:
王玉峰, 程谦恭, 林棋文, 李坤, 史安文. 青藏高原古高速远程滑坡沉积学特征研究[J]. 地学前缘, 2021, 28(2): 106-124.
WANG Yufeng, CHENG Qiangong, LIN Qiwen, LI Kun, SHI Anwen. Observations on the sedimentary structure of prehistoric rock avalanches on the Tibetan Plateau, China[J]. Earth Science Frontiers, 2021, 28(2): 106-124.
图1 研究区构造图(a)及滑坡点平面图(b—塔合曼滑坡;c—尼续村滑坡;d—乱石包滑坡)(据中国地势图:审图号GS(2016)1609号)
Fig.1 Geological settings of the study area (a), and plan-views of the Tagarma rock avalanche (b), the Nyixoi Chongco rock avalanche (c) and the Luanshibao rock avalanche (d). Modified after Topographic Map of China, No. GS(2016)1609.
图2 塔合曼滑坡遥感影像图(a)与堆积区统计点巨石展布玫瑰花图(b)
Fig.2 Remote sensing image of the Tagarma rock avalanche (a), and rose diagrams of the counted sites of megablocks (b)
图3 流通区大型堆积平台(a)及其内部拼贴构造(b)与右侧侧缘脊(c)展布图
Fig.3 View of the toreva block (a) with an enlarged-view of the jigsaw structure (b), and view of the right lateral levee (c)
图7 尼续村滑坡遥感影像图(a)及堆积体表面堆积脊统计柱状图(b)和玫瑰花图(c) c图中数字代表堆积脊个数,红色箭头指代滑体的主运动方向。
Fig.7 Remote sensing image of the Nyixoi Chongco rock avalanche (a), and histograms (b) and rose diagrams (c) of the counted ridges
图8 尼续村滑坡流通区大型堆积平台(a,b)和纵向脊(c)及其前缘高陡堆积斜坡(d) 图中红色箭头代表滑体运动方向。
Fig.8 The toreva blocks (a, b), and longitudinal ridges (c) featured by steep frontal accumulation slope (d) of the Nyixoi Chongco rock avalanche
图10 尼续村滑坡堆积体表面巨石展布特征 a,b—巨石定向排列规律;c,d—拼贴构造。图中红色箭头代表滑体运动方向。
Fig.10 Photos of megablocks deposited on the top surface of the Nyixoi Chongco rock avalanche
图13 乱石包滑坡流通区(a,b)和堆积区(c-e)地貌展布图及巨石堆积图(f)
Fig.13 Photos showing the surficial landforms of zones Ⅱ (a,b) and Ⅲ (c-e) and deposited structures of megablocks (f) of the Luanshibao rock avalanche
[1] | 程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007,25(1):72-84. |
[2] | 黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京: 科学出版社, 2008. |
[3] | 许强, 裴向军, 黄润秋, 等. 汶川地震大型滑坡研究[M]. 北京: 科学出版社, 2009. |
[4] | PLAFKER G, ERICKSEN G E. Nevados Huascaran avalanches, Peru[M]//VOIGHT B. Rockslides and avalanche. Amsterdam: Elsevier, 1978: 277-314. |
[5] |
FAN X M, XU Q, SCARINGI G, et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report[J]. Landslides, 2019,16(1):139-154.
DOI URL |
[6] | 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例[J]. 中国地质, 2017,44(5):827-841. |
[7] | 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡: 堰塞堵江事件分析研究[J]. 工程地质学报, 2018,26(6):1534-1551. |
[8] | SHREVE R L. Geology and mechanics of the Blackhawk landslide, Lucerne Valley, California[D]. Los Angeles: California Institute of Technology Pasadena, 1959. |
[9] | 成都地质学院工程地质研究室. 龙羊峡水电站重大工程地质问题研究[M]. 成都: 成都科技大学出版社, 1989. |
[10] |
DAVIES T, MCSAVENEY M J, HODGSONK K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 1999,36(6):1096-1110.
DOI URL |
[11] |
IVERSON R M, REID M E, LOGANM M L, et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 2011,4(2):116.
DOI URL |
[12] |
HABIB P. Production of gaseous pore pressure during rock slides[J]. Rock Mechanics, 1975,7(4):193-197.
DOI URL |
[13] | WANG Y F, DONG J J, CHENG Q G. Velocity-dependent frictional weakening of large rock avalanche basal facies: implications for rock avalanche hypermobility?[J]. Journal of Geophysical Research: Solid Earth, 2017,122(3):1648-1676. |
[14] |
HU W, HUANG R Q, MCSAVENEY M, et al. Mineral changes quantify frictional heating during a large low-friction landslide[J]. Geology, 2018,46(3):223-226.
DOI URL |
[15] |
XU Q, SHANG Y J, VAN ASCH T, et al. Observations from the large, rapid Yigong rockslide-debris avalanche, southeast Tibet[J]. Canadian Geotechnical Journal, 2012,49(5):589-606.
DOI URL |
[16] | STROM A L, ABDRAKHMATOV K. Rockslides and rock avalanches of central Asia: distribution, impacts, and hazard assessment[M]. Amsterdam: Elsevier, 2018. |
[17] |
DE BLASIO F V. Friction and dynamics of rock avalanches travelling on glaciers[J]. Geomorphology, 2014,213:88-98.
DOI URL |
[18] |
AARON J, MCDOUGALL S. Rock avalanche mobility: the role of path material[J]. Engineering Geology, 2019,257:105126.
DOI URL |
[19] |
BLAIR T C. Form, facies, and depositional history of the North Long John rock avalanche, Owens Valley, California[J]. Canadian Journal of Earth Sciences, 1999,36(6):855-870.
DOI URL |
[20] | CHARRIÈRE M, HUMAIR F, FROESE C, et al. From the source area to the deposit: collapse, fragmentation, and propagation of the Frank Slide[J]. Geological Society of America Bulletin, 2016,128(1/2):332-351. |
[21] |
DUFRESNE A, DAVIEST R. Longitudinal ridges in mass movement deposits[J]. Geomorphology, 2009,105(3/4):171-181.
DOI URL |
[22] |
DUFRESNE A, PRAGER C, BÖSMEIER A. Insights into rock avalanche emplacement processes from detailed morpho-lithological studies of the Tschirgant deposit (Tyrol, Austria)[J]. Earth Surface Processes and Landforms, 2016,41(5):587-602.
DOI URL |
[23] |
DUFRESNE A, GEERTSEMA M. Rock slide-debris avalanches: flow transformation and hummock formation, examples from British Columbia[J]. Landslides, 2020,17:15-32.
DOI URL |
[24] |
LONGCHAMP C, ABELLAN A, JABOYEDOFF M, et al. 3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism[J]. Earth Surface Dynamics, 2016,4(3):743-755.
DOI URL |
[25] |
PAGUICAN E M R, VAN WYK DE VRIES B, LAGMAY A F M. Hummocks: how they form and how they evolve in rockslide-debris avalanches[J]. Landslides, 2014,11(1):67-80.
DOI URL |
[26] | JOHNSON C G, KOKELAAR B P, IVERSON R M, et al. Grain-size segregation and levee formation in geophysical mass flows[J]. Journal of Geophysical Research: Earth Surface, 2012,117(F1):F01032. |
[27] |
OSTERMANN M, SANDERS D, IVY-OCHS S, et al. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): landform interpretation and kinematics of rapid mass movement[J]. Geomorphology, 2012,171/172:83-93.
DOI URL |
[28] |
SHEA T, VAN WYK DE VRIES B. Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches[J]. Geosphere, 2008,4(4):657-686.
DOI URL |
[29] | 崔鹏, 陈容, 向灵芝, 等. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展, 2014,10(2):103-109. |
[30] | 童立强, 祁生文, 安国英. 喜马拉雅山地区重大地质灾害遥感调查研究[M]. 北京: 科学出版社, 2013. |
[31] | 李文巧, 陈杰, 袁兆德, 等. 帕米尔高原1895年塔什库尔干地震地表多段同震破裂与发震构造[J]. 地震地质, 2011,33(2):260-276. |
[32] | 吴中海, 叶培盛, 王成敏, 等. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学: 中国地质大学学报, 2015,40(10):1621-1642. |
[33] | 徐锡伟, 闻学泽, 于贵华, 等. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学: 地球科学, 2005,35(6):540-551. |
[34] |
NICOLETTI P G, SORRISOVALVO M. Geomorphic controls of the shape and mobility of rock avalanches[J]. Geological Society of America Bulletin, 1991,103(10):1365-1373.
DOI URL |
[35] | 袁兆德, 陈杰, 李文巧, 等. 帕米尔高原东部塔合曼大型滑坡体的10Be测年[J]. 第四纪研究, 2012,32(3):409-416. |
[36] |
ZHU Y X, DAI F C, YAO X, et al. Field investigation and numerical simulation of the seismic triggering mechanism of the Tahman landslide in eastern Pamir, northwest China[J]. Bulletin of Engineering Geology and the Environment, 2019,78(8):5795-5809.
DOI URL |
[37] |
WANG Y F, CHENG Q G, LIN Q W, et al. Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms[J]. Geomorphology, 2018,317:170-183.
DOI URL |
[38] |
DUFRESNE A, BÖSMEIER A, BÖSMEIER A . Sedimentology of rock avalanche deposits-case study and review[J]. Earth-Science Reviews, 2016,163:234-259.
DOI URL |
[39] |
MISHRA S, KHETWAL A, CHAKRABORTY T. Dynamic characterisation of gneiss[J]. Rock Mechanics and Rock Engineering, 2019,52(1):61-81.
DOI URL |
[40] |
ANDRADE D, VAN WYK DE VRIES B. Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models[J]. Bulletin of Volcanology, 2010,72(7):771-789.
DOI URL |
[41] |
THOMPSON N, BENNETT M R, PETFORD N. Development of characteristic volcanic debris avalanche deposit structures: new insight from distinct element simulations[J]. Journal of Volcanology and Geothermal Research, 2010,192(3/4):191-200.
DOI URL |
[42] | STROM A. Evidence of momentum transfer during large-scale rockslide’s motion[C]//Geologically Active-proceedings of the 11th IAEG Congress. Auckland: CRC Press, 2010: 73-86. |
[43] |
HUNGR O, EVANS S G. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 2004,116(9):1240-1252.
DOI URL |
[44] |
NICOLETTI P G, PARISE M. Geomorphology and kinematics of the Conturrana rockslide-debris flow (NW Sicily)[J]. Earth Surface Processes and Landforms, 1996,21(10):875-892.
DOI URL |
[45] |
YOSHIDA H. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area[J]. Geomorphology, 2014,223:67-80.
DOI URL |
[46] | STROM A. Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modeling[M]//EVANS S G, MUGNOZZA G S, STROM A, et al. Landslides from massive rock slope failure. Dordrecht: Springer, 2006: 305-326. |
[47] |
YARNOLD J C. Rock-avalanche characteristics in dry climates and the effect of flow into lakes: insights from mid-Tertiary sedimentary breccias near Artillery Peak, Arizona[J]. Geological Society of America Bulletin, 1993,105(3):345-360.
DOI URL |
[1] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[2] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[3] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[4] | 张进, 张北航, 赵衡, 云龙, 曲军峰, 王振义, 杨亚琦, 赵硕. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 2023, 30(5): 334-357. |
[5] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[6] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[7] | 刘晓宇, 杨文采, 陈召曦, 瞿辰, 于常青. 青藏高原东部地块的属性与演化[J]. 地学前缘, 2023, 30(3): 233-241. |
[8] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[9] | 贾承造, 陈竹新, 雷永良, 王丽宁, 任荣, 苏楠, 杨庚. 中国中西部褶皱冲断带构造变形机制与结构模型[J]. 地学前缘, 2022, 29(6): 156-174. |
[10] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[11] | 栗兵帅, 颜茂都, 张伟林. 柴北缘早新生代旋转变形特征及其构造意义[J]. 地学前缘, 2022, 29(4): 249-264. |
[12] | 龚承林, 刘力, 邵大力, 郭荣涛, 朱一杰, 齐昆. 晚中新世以来孟加拉-尼科巴扇跷跷板式沉积转换及其源-汇成因机制[J]. 地学前缘, 2022, 29(4): 25-41. |
[13] | 高锐, 周卉, 卢占武, 郭晓玉, 李文辉, 王海燕, 李洪强, 熊小松, 黄兴富, 徐啸. 深地震反射剖面揭露青藏高原陆-陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2022, 29(2): 14-27. |
[14] | 卢占武, 高锐, Simon KLEMPERER, 王海燕, 董树文, 李文辉, 李洪强. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217. |
[15] | 张衡, 徐团伟, 裴顺平, 赵俊猛. 利用分布式光纤声传感设备开展青藏高原易贡湖浅层结构探测[J]. 地学前缘, 2021, 28(6): 227-234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||