地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 249-264.DOI: 10.13745/j.esf.sf.2022.3.31
• “印度-欧亚大陆碰撞及其远程效应”专栏之五 • 上一篇 下一篇
收稿日期:
2022-03-18
修回日期:
2022-04-01
出版日期:
2022-07-25
发布日期:
2022-07-28
通讯作者:
颜茂都
作者简介:
栗兵帅(1988—),男,博士,讲师,构造古地磁专业。E-mail: flyerli005@126.com
基金资助:
LI Bingshuai1,2(), YAN Maodu2,*(), ZHANG Weilin2
Received:
2022-03-18
Revised:
2022-04-01
Online:
2022-07-25
Published:
2022-07-28
Contact:
YAN Maodu
摘要:
青藏高原东北部作为高原北东向扩展的前缘地带,新生代以来变形十分强烈,是研究青藏高原隆升变形过程和生长模式的关键地区之一。然而高原东北部何时卷入印度-欧亚大陆碰撞挤压变形系统以及高原扩展的运动学、动力学过程和机制等仍存在很大争议。大陆碰撞及持续挤压过程往往会伴随块体及其内部的旋转变形,而古地磁磁偏角可以定量恢复块体绕垂直轴发生的旋转变形,在研究块体旋转变形方面具有其独特优势。高原东北部,尤其是柴达木盆地,缺乏早新生代的细致旋转变形研究,制约了我们对高原东北部地区早新生代的旋转变形特征及其对印度-欧亚大陆碰撞远程响应的理解。柴北缘地区出露有近乎连续完整的早新生代路乐河组-下干柴沟组地层,为研究青藏高原东北部早新生代旋转变形提供了理想场所。本文对柴北缘逆冲带北中部的驼南和高泉两剖面早新生代路乐河组和下干柴沟组地层开展精细古地磁旋转变形研究:包括在驼南剖面布设4个时间节点、24个采点260个古地磁岩心样品,高泉剖面布设2个时间节点、14个采点150个古地磁岩心样品。通过系统岩石磁学和热退磁实验分析,揭示两剖面早新生代样品的载磁矿物主要是赤铁矿,并含有少量磁铁矿;所获得31个有效采点的高温特征剩磁方向通过褶皱检验和倒转检验,指示可能是岩石沉积时期记录的原生剩磁方向。结合柴北缘中部红柳沟剖面已有古地磁数据,三剖面古地磁结果一致表明柴北缘地区在45~35 Ma期间发生了显著(约20°)逆时针旋转变形。结合东部陇中盆地同时期古地磁旋转变形记录,发现二者具有反向的共轭旋转变形关系。综合青藏高原东部早新生代(52~46 Ma)旋转变形和渐新世以来走滑断裂活动等证据,我们认为:(1)高原东北部的共轭旋转变形是该地区对印度-欧亚碰撞的远程响应,其时间不晚于中始新世(约45 Ma);(2)早新生代自喜马拉雅东构造结至高原东北部,其两侧系统的共轭旋转变形很可能是该时期喜马拉雅东构造结北北东向压入欧亚大陆引起的右旋和左旋剪切作用导致,且剪切应力及相关的地壳缩短和旋转变形等呈现自东构造结地区沿北北东向逐步向高原东北部传递的特征;(3)古新世—始新世时期高原构造变形可能主要通过南北向挤压-地壳增厚模式、渐新世以来主要以沿主要断裂带的侧向挤出模式来调整。
中图分类号:
栗兵帅, 颜茂都, 张伟林. 柴北缘早新生代旋转变形特征及其构造意义[J]. 地学前缘, 2022, 29(4): 249-264.
LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications[J]. Earth Science Frontiers, 2022, 29(4): 249-264.
图3 驼南和高泉两剖面代表性样品岩石磁学结果 a—磁化率随温度变化(κ-T)曲线(红色为升温曲线,蓝色为降温曲线);b—均一化等温剩磁获得曲线及反向场退磁曲线(IRM);c—均一化顺磁校正后的磁滞回线(Hysteresis loops)。样品T53-1和T57-3来自驼南剖面,T5-1和T8-2来自高泉剖面。
Fig.3 Rock magnetic results of representative samples from the Tuonan and Gaoquan sections
图4 驼南和高泉地区代表性样品的退磁Zijderveld正交矢量投影图(地理坐标) a-h—来自驼南剖面;i-l—来自高泉剖面。
Fig.4 Orthogonal demagnetization diagrams of representative samples from the Tuonan and Gaoquan sections (in situ)
图5 驼南和高泉两剖面低温和高温分量方向等积投影图 a—低温分量;b,c—驼南和高泉剖面高温分量,上图和下图分别为样品和采点结果。红圆为样品/采点平均方向的位置,实心圆、空心圆分别代表上、下球面投影。
Fig.5 Stereo-plots of low-temperature and high-temperature components from the Tuonan and Gaoquan sections
图6 驼南和高泉两剖面各时间节点高温分量方向等积投影图 a-d—驼南剖面;e,f—高泉剖面。红圆为采点平均方向位置,实心圆、空心圆分别代表上、下球面投影。
Fig.6 Stereo-plots of high-temperature components of each time interval from the Tuonan and Gaoquan sections
时间 节点 | 年代/ Ma | 误 差 | 采样点位置 | n/N | Dg | Ig | Ds | Is | k | α95 | 参考极位置 | 旋转量/(°) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
纬度/(°) | 经度/(°) | 纬度/(°) | 经度/(°) | A95 | ||||||||||||
驼南地区 | ||||||||||||||||
d | 38.0 | 2.0 | 38.494 4 | 93.919 0 | 6/6 | 196.6 | -9.4 | 200.1 | -31.6 | 24.1 | 13.9 | 81.3 | 162.4 | 3.3 | 9.3±13.6 | |
c | 42.0 | 2.0 | 38.500 2 | 93.916 7 | 6/6 | 14.0 | 24.7 | 16.9 | 38.0 | 21.9 | 14.6 | 81.3 | 162.4 | 3.3 | 6.1±15.3 | |
b | 45.0 | 1.0 | 38.504 3 | 93.917 7 | 6/6 | 186.5 | 8.5 | 187.6 | -35.3 | 32.6 | 11.9 | 80.9 | 162.4 | 3.4 | -3.7±12.3 | |
a | 47.0 | 1.0 | 38.511 0 | 93.834 9 | 5/6 | 174.6 | -35.7 | 177.6 | -41.3 | 70.9 | 9.2 | 80.9 | 162.4 | 3.4 | -13.7±12.3 | |
平均方向 | 23/24 | 188.9 | -14.6 | 191.3 | -36.7 | 26.1 | 6.0 | 81.3 | 162.4 | 3.3 | 0.5±6.9 | |||||
高泉地区 | ||||||||||||||||
b | 37.0 | 4.0 | 38.400 7 | 94.272 3 | 5/6 | 191.1 | 18.4 | 202.7 | -36.5 | 34.3 | 7.5 | 81.3 | 162.4 | 3.3 | 12.0±8.3 | |
a | 48.0 | 4.0 | 38.403 3 | 94.280 2 | 3/9 | 181.4 | 44.2 | 184.8 | -29.4 | 208.2 | 8.6 | 80.9 | 162.4 | 3.4 | -6.5±8.7 | |
平均方向 | 8/14 | 189.3 | 48.5 | 193.1 | -30.8 | 48.2 | 8.1 | 81.3 | 162.4 | 3.3 | 2.4±8.3 |
表1 驼南和高泉两地区早新生代古地磁结果及相对于稳定欧亚大陆参考极旋转量
Table 1 Early Cenozoic paleomagnetic results and relative rotations compared to expected directions calculated from stable Eurasia reference poles at the Tuonan and Gaoquan sections
时间 节点 | 年代/ Ma | 误 差 | 采样点位置 | n/N | Dg | Ig | Ds | Is | k | α95 | 参考极位置 | 旋转量/(°) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
纬度/(°) | 经度/(°) | 纬度/(°) | 经度/(°) | A95 | ||||||||||||
驼南地区 | ||||||||||||||||
d | 38.0 | 2.0 | 38.494 4 | 93.919 0 | 6/6 | 196.6 | -9.4 | 200.1 | -31.6 | 24.1 | 13.9 | 81.3 | 162.4 | 3.3 | 9.3±13.6 | |
c | 42.0 | 2.0 | 38.500 2 | 93.916 7 | 6/6 | 14.0 | 24.7 | 16.9 | 38.0 | 21.9 | 14.6 | 81.3 | 162.4 | 3.3 | 6.1±15.3 | |
b | 45.0 | 1.0 | 38.504 3 | 93.917 7 | 6/6 | 186.5 | 8.5 | 187.6 | -35.3 | 32.6 | 11.9 | 80.9 | 162.4 | 3.4 | -3.7±12.3 | |
a | 47.0 | 1.0 | 38.511 0 | 93.834 9 | 5/6 | 174.6 | -35.7 | 177.6 | -41.3 | 70.9 | 9.2 | 80.9 | 162.4 | 3.4 | -13.7±12.3 | |
平均方向 | 23/24 | 188.9 | -14.6 | 191.3 | -36.7 | 26.1 | 6.0 | 81.3 | 162.4 | 3.3 | 0.5±6.9 | |||||
高泉地区 | ||||||||||||||||
b | 37.0 | 4.0 | 38.400 7 | 94.272 3 | 5/6 | 191.1 | 18.4 | 202.7 | -36.5 | 34.3 | 7.5 | 81.3 | 162.4 | 3.3 | 12.0±8.3 | |
a | 48.0 | 4.0 | 38.403 3 | 94.280 2 | 3/9 | 181.4 | 44.2 | 184.8 | -29.4 | 208.2 | 8.6 | 80.9 | 162.4 | 3.4 | -6.5±8.7 | |
平均方向 | 8/14 | 189.3 | 48.5 | 193.1 | -30.8 | 48.2 | 8.1 | 81.3 | 162.4 | 3.3 | 2.4±8.3 |
图7 柴北缘地区驼南、高泉和红柳沟剖面早新生代旋转变形特征
Fig.7 Early Cenozoic paleomagnetic rotations of the Tuonan, Gaoquan and Hongliugou sections in the northern margin of the Qaidam Basin
图8 青藏高原新生代两阶段变形过程 a—始新世时期,喜马拉雅东构造结北北东向揳入欧亚大陆引起共轭剪切应力导致喜马拉雅东构造结附近和高原东北部共轭旋转变形;b—早渐新世以来,高原周缘一系列大型边界走滑和逆冲断裂带活动并伴随块体显著的顺时针旋转变形调整高原东向挤出。QB—柴达木盆地;LZB—陇中盆地;XLB—下拉秀盆地;GJB—贡觉盆地;ATF—阿尔金断裂;LMST—龙门山断裂带;KKF—喀喇昆仑断裂;XSH-XJ—鲜水河—小江断裂带;ASRR—哀牢山—红河断裂带;GLF—高黎贡断裂;SGF—实皆断裂。
Fig.8 Two-stage evolution of the Cenozoic deformation of the Tibetan Plateau
[1] | ENGLAND P, MOLNAR P. Active deformation of Asia: from kinematics to dynamics[J]. Science, 1997, 278(5338): 647-650. |
[2] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. |
[3] | 黄宝春, 陈军山, 易治宇. 再论印度与亚洲大陆何时何地发生初始碰撞[J]. 地球物理学报, 2010, 53(9): 2045-2058. |
[4] | MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. |
[5] | ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313): 788-790. |
[6] | TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. |
[7] | WANG C S, ZHAO X X, LIU Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992. |
[8] | DING L, XU Q, YUE Y H, et al. The Andean-type Gangdese mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. |
[9] | XIONG Z Y, DING L, SPICER R A, et al. The early Eocene rise of the Gonjo Basin, SE Tibet: from low desert to high forest[J]. Earth and Planetary Science Letters, 2020, 543: 116312. |
[10] | FANG X M, YAN M D, ZHANG W L, et al. Paleogeography control of Indian monsoon intensification and expansion at 41 Ma[J]. Science Bulletin, 2021, 66(22): 2320-2328. |
[11] | CHEN Y, WU B S, XIONG Z Y, et al. Evolution of eastern Tibetan river systems is driven by the indentation of India[J]. Communications Earth & Environment, 2021, 2(1): 1-7. |
[12] | MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47. |
[13] | WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43. |
[14] | LI Y L, WANG C S, DAI J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review[J]. Earth-Science Reviews, 2015, 143: 36-61. |
[15] | JOLIVET M, BRUNEL M, SEWARD D, et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints[J]. Tectonophysics, 2001, 343(1/2): 111-134. |
[16] | YIN A, RUMELHART P E, BUTLER R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10): 1257-1295. |
[17] | FANG X M, GARZIONE C, VAN DER VOO R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560. |
[18] | HORTON B K, DUPONT-NIVET G, ZHOU J, et al. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: magnetostratigraphic and biostratigraphic results[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B4): 657-681. |
[19] | YIN A, DANG Y Q, WANG L C, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 2008, 120(7): 813-846. |
[20] | YIN A, DANG Y Q, ZHANG M, et al. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 2008, 120(7/8): 847-876. |
[21] | CLARK M K, FARLEY K A, ZHENG D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88. |
[22] | DUVALL A R, CLARK M K, VAN DER PLUIJM B A, et al. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J]. Earth and Planetary Science Letters, 2011, 304(3-4): 520-526. |
[23] | ZHUANG G S, HOURIGAN J K, RITTS B D, et al. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, Northwest China[J]. American Journal of Science, 2011, 311(2): 116-152. |
[24] | 张伟林. 柴达木盆地新生代高精度磁性地层与青藏高原隆升[D]. 兰州: 兰州大学, 2006. |
[25] | FANG X M, FANG Y H, ZAN J B, et al. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution[J]. Earth Science Reviews, 2019, 190: 460-485. |
[26] | FANG X M, GALY A, YANG Y B, et al. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10): 992-996. |
[27] | JI J L, ZHANG K X, CLIFT P D, et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: implications for the growth of the Northeastern Tibetan Plateau[J]. Gondwana Research, 2017, 46: 141-155. |
[28] | WANG W T, ZHENG W J, ZHANG P Z, et al. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8: 15887. |
[29] | NIE J S, REN X P, SAYLOR J E, et al. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau[J]. Geological Society of America Bulletin, 2020, 132(1/2): 310-320. |
[30] | WANG W T, ZHANG P Z, GARZIONE C N, et al. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119: 1-8. |
[31] | 段磊, 张博譞, 王伟涛, 等. 柴达木盆地路乐河剖面磁性地层年代及其构造变形[J]. 科学通报, 2022, 67(9): 872-887. |
[32] | 王伟涛, 张培震, 段磊, 等. 柴达木盆地新生代地层年代框架与沉积-构造演化[J]. 科学通报, 2022. https://doi.org/10.1360/TB-2022-0108. |
[33] | LU H J, MALUSÀ M G, ZHANG Z Y, et al. Syntectonic sediment recycling controls eolian deposition in eastern Asia since -8 Ma[J]. Geophysical Research Letters, 2022, 49(3). https://doi.org/10.1029/2021GL096789. |
[34] | LU H J, SANG S P, WANG P, et al. Initial uplift of the Qilian Shan, northern Tibet since ca. 25 Ma: implications for regional tectonics and origin of eolian deposition in Asia[J]. GSA Bulletin, 2022. https://doi.org/10.1130/B36242.1. |
[35] | DAI S, FANG X M, DUPONT-NIVET G, et al. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: tectonic implications for the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11): 335-360. |
[36] | YANG F, GUO Z T, ZHANG C X, et al. High-resolution Eocene magnetostratigraphy of the Xijigou section: implications for the infilling process of Xining Basin, northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 7588-7603. |
[37] | HE C C, ZHANG Y Q, LI S K, et al. Magnetostratigraphic study of a Late Cretaceous-Paleogene succession in the eastern Xining basin, NE Tibet: constraint on the timing of major tectonic events in response to the India-Eurasia collision[J]. Geological Society of America Bulletin, 2021, 133(11/12): 2457-2484. |
[38] | DUPONT-NIVET G, DAI S, FANG X M, et al. Timing and distribution of tectonic rotations in the northeastern Tibetan plateau[J]. Special Paper of the Geological Society of America, 2008, 444: 73-87. |
[39] | FANG X M, YAN M D, VAN DER VOO R, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin, 2005, 117(9/10): 1208-1225. |
[40] | LI W, DONG Y P, GUO A L, et al. Chronology and tectonic significance of Cenozoic faults in the Liupanshan arcuate tectonic belt at the northeastern margin of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2013, 73: 103-113. |
[41] | LIU D L, LI H B, SUN Z M, et al. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages[J]. Gondwana Research, 2017, 41: 438-450. |
[42] | MÉTIVIER F, GAUDEMER Y, TAPPONNIER P, et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor basins, China[J]. Tectonics, 1998, 17(6): 823-842. |
[43] | DEWEY J F. The Tectonic Evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1988, 327(1594): 379-413. |
[44] | 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. |
[45] | 万景林, 郑德文, 郑文俊, 等. MDD法和裂变径迹法相结合模拟样品的低温热历史: 以柴达木盆地北缘赛什腾山中新生代构造演化为例[J]. 地震地质, 2011, 33(2): 369-382. |
[46] | 刘永江, 葛肖虹, GENSER J, 等. 阿尔金断裂带构造活动的40Ar/39Ar年龄证据[J]. 科学通报, 2003, 48(12): 1335-1341. |
[47] | VINCENT S J, ALLEN M B. Evolution of the Minle and Chaoshui Basins, China: implications for Mesozoic strike-slip basin formation in Central Asia[J]. Geological Society of America Bulletin, 1999, 111(5): 725-742. |
[48] | ZHAO X D, ZHAO J F, ZENG X, et al. Early-Middle Jurassic paleogeography reconstruction in the Western Qaidam Basin: insights from sedimentology and detrital zircon geochronology[J]. Marine and Petroleum Geology, 2020, 118: 104445. |
[49] | ALLEN M B, MACDONALD D I M, XUN Z, et al. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine Petroleum Geology, 1997, 14(7/8): 951-972. |
[50] | NORTHRUP C J, ROYDEN L H, BURCHFIEL B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719-722. |
[51] | PELTZER G, TAPPONNIER P. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: an experimental approach[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B12): 15085-15117. |
[52] | TAPPONNIER P, PELTZER G, DAIN A Y L, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. |
[53] | TAPPONNIER P, PELTZER G, ARMIJO R. On the mechanics of the collision between India and Asia[J]. Geological Society of London Special Publications, 1986, 19(1): 113-157. |
[54] | ENGLAND P, HOUSEMAN G. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions[J]. Nature, 1985, 315(6017): 297-301. |
[55] | ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676. |
[56] | KLOOTWIJK C T, CONAGHAN P J, POWELL C M. The Himalayan arc: large-scale continental subduction, oroclinal bending and back-arc spreading[J]. Earth and Planetary Science Letters, 1985, 75(2/3): 167-183. |
[57] | AVOUAC J P, TAPPONNIER P. Kinematic model of active deformation in central-Asia[J]. Geophysical Research Letters, 1993, 20(10): 895-898. |
[58] | SATO K, LIU Y Y, ZHU Z C, et al. Tertiary paleomagnetic data from northwestern Yunnan, China: further evidence for large clockwise rotation of the Indochina block and its tectonic implications[J]. Earth and Planetary Science Letters, 2001, 185(1): 185-198. |
[59] | THOMAS J C, CHAUVIN A, GAPAIS D, et al. Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia)[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B8): 15141-15160. |
[60] | OTOFUJI Y, INOUE Y, FUNAHARA S, et al. Palaeomagnetic study of eastern Tibet-deformation of the Three Rivers region[J]. Geophysical Journal International, 1990, 103(1): 85-94. |
[61] | TONG Y B, YANG Z Y, PEI J L, et al. Crustal clockwise rotation of the southeastern edge of the Tibetan Plateau since the late Oligocene[J]. Journal of Geophysical Research: Solid Earth, 2020, 126(1). https://doi.org/10.1029/2020JB020153. |
[62] | HALIM N, COGNé J P, CHEN Y, et al. New Cretaceous and Early Tertiary paleomagnetic results from Xining-Lanzhou basin, Kunlun and Qiangtang blocks, China: implications on the geodynamic evolution of Asia[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B9): 21025-21045. |
[63] | COGNÉ J P, HALIM N, CHEN Y, et al. Resolving the problem of shallow magnetizations of Tertiary age in Asia: insights from paleomagnetic data from the Qiangtang, Kunlun, and Qaidam blocks (Tibet, China), and a new hypothesis[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17715-17734. |
[64] | YANG T S, YANG Z Y, SUN Z M, et al. New Early Cretaceous paleomagnetic results from Qilian orogenic belt and its tectonic implications[J]. Science in China Series D Earth Sciences, 2002, 45(6): 565-576. |
[65] | DUPONT-NIVET G, HORTON B K, BUTLER R F, et al. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(109): 657-681. |
[66] | YAN M D, VAN DER VOO R, FANG X M, et al. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet[J]. Earth and Planetary Science Letters, 2006, 241(1-2): 234-247. |
[67] | FROST G M, COE R S, MENG Z F, et al. Preliminary early cretaceous paleomagnetic results from the Gansu Corridor, China[J]. Earth and Planetary Science Letters, 1995, 129(1/2/3/4): 217-232. |
[68] | CHEN Y, GILDER S, HALIM N, et al. New paleomagnetic constraints on central Asian kinematics: displacement along the Altyn Tagh fault and rotation of the Qaidam Basin[J]. Tectonics, 2002, 21(5): 6-1-6-19. |
[69] | DUPONT-NIVET G, BUTLER R F, YIN A, et al. Paleomagnetism indicates no Neogene rotation of the Qaidam Basin in northern Tibet during Indo-Asian collision[J]. Geology, 2002, 30(3): 263-266. |
[70] | DUPONT-NIVET G, BUTLER R F, YIN A, et al. Paleomagnetism indicates no Neogene vertical axis rotations of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B8): 503-518. |
[71] | YU X J, FU S T, GUAN S W, et al. Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: implication for no integral rotation since the Eocene and a rigid Qaidam block[J]. Geochemistry Geophysics Geosystems, 2014, 15(6): 2109-2127. |
[72] | LI B S, YAN M D, ZHANG W L, et al. Paleomagnetic rotation constraints on the deformation of the northern Qaidam marginal thrust belt and implications for strike-slip faulting along the Altyn Tagh Fault[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7207-7224. |
[73] | LI B S, YAN M D, ZHANG W L, et al. Bidirectional growth of the Altyn Tagh Fault since the Early Oligocene[J]. Tectonophysics, 2021, 815: 228991. |
[74] | GILDER S, CHEN Y, SEN S. Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B12): 30505-30521. |
[75] | YAN M D, FANG X M, VAN DER VOO R, et al. Neogene rotations in the Jiuquan Basin, Hexi Corridor, China[J]. Geological Society, London, Special Publications, 2013, 373(1): 173-189. |
[76] | WANG W T, ZHANG P Z, PANG J Z, et al. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: a sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2235-2257. |
[77] | LI B S, YAN M D, ZHANG W L, et al. New paleomagnetic constraints on Middle Miocene strike-slip faulting along the middle Altyn Tagh Fault[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(6): 4106-4122. |
[78] | LU H J, WANG E, MENG K. Paleomagnetism and anisotropy of magnetic susceptibility of the Tertiary Janggalsay section (southeast Tarim basin): implications for Miocene tectonic evolution of the Altyn Tagh Range[J]. Tectonophysics, 2014, 618: 67-78. |
[79] | LU H J, FU B H, SHI P L, et al. Constraints on the uplift mechanism of northern Tibet[J]. Earth and Planetary Science Letters, 2016, 453: 108-118. |
[80] | BALLY A W, CHOU I, CLAYTON R, et al. Notes on sedimentary basins in China[J]. Open-File Report, 1986. |
[81] | 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991. |
[82] | 常宏. 阿尔金山索尔库里盆地晚第三系磁性地层研究与青藏高原北部隆升[D]. 北京: 中国科学院研究生院, 2004. |
[83] | SUN Z M, YANG Z Y, PEI J L, et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 635-646. |
[84] | FANG X M, ZHANG W L, MENG Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306. |
[85] | 方小敏, 吴福莉, 韩文霞, 等. 上新世—第四纪亚洲内陆干旱化过程: 柴达木中部鸭湖剖面孢粉和盐类化学指标证据[J]. 第四纪研究, 2008, 28(5): 874-882. |
[86] | 杨用彪, 孟庆泉, 宋春晖, 等. 柴达木盆地东北部新近纪构造旋转及其意义[J]. 地质论评, 2009, 55(6): 775-784. |
[87] | SONG C H, HU S H, HAN W X, et al. Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 67-76. |
[88] | CHANG H, LI L Y, QIANG X K, et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2015, 430: 271-283. |
[89] | WANG E, BURCHFIEL B C. Late Cenozoic right-lateral movement along the Wenquan Fault and associated deformation: implications for the kinematic history of the Qaidam Basin, northeastern Tibetan Plateau[J]. International Geology Review, 2004, 46(10): 861-879. |
[90] | 栗兵帅, 颜茂都, 张伟林, 等. 阿尔金断裂南侧弧形地貌单元成因及其构造意义[J]. 地震地质, 2019, 41(2): 300-319. |
[91] | BUTLER R F. Paleomagnetism: magnetic domains to geologic terranes[M]. Boston (Mass.): Blackwell. 1992: 1-319. |
[92] | KIRSCHVINK J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3): 699-718. |
[93] | FISHER R. Dispersion on a sphere[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1953, 217(1130): 295-305. |
[94] | MCELHINNY M W. Statistical significance of the fold test in palaeomagnetism[J]. Geophysical Journal of the Royal Astronomical Society, 1964, 8(3): 338-340. |
[95] | MCFADDEN P L. A new fold test for palaeomagnetic studies[J]. Geophysical Journal International, 1990, 103(103): 163-169. |
[96] | WATSON G S, ENKIN R J. The fold test in paleomagnetism as a parameter estimation problem[J]. Geophysical Research Letters, 1993, 20(19): 2135-2137. |
[97] | MCFADDEN P L, MCELHINNY M W. Classification of the reversal test in palaeomagnetism[J]. Geophysical Journal International, 1990, 103(3): 725-729. |
[98] | BESSE J, COURTILLOT V. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B11): 101029-101060. |
[99] | DEMAREST H H. Error analysis for the determination of tectonic rotation from paleomagnetic data[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B5): 4321-4328. |
[100] | SUN Z M, YANG Z Y, PEI J L, et al. New Early Cretaceous paleomagnetic data from volcanic and red beds of the eastern Qaidam Block and its implications for tectonics of Central Asia[J]. Earth and Planetary Science Letters, 2006, 243(1): 268-281. |
[101] | BAZHENOV M L, BURTMAN V S. Tectonics and paleomagnetism of structural arcs of the Pamir-Punjab syntaxis[J]. Journal of Geodynamics, 1986, 5(3): 383-396. |
[102] | BLAYNEY T, DUPONT-NIVET G, NAJMAN Y, et al. Tectonic evolution of the Pamir recorded in the western Tarim Basin (China): sedimentologic and magnetostratigraphic analyses of the Aertashi section[J]. Tectonics, 2019, 38(2): 492-525. |
[103] | LI B S, YAN M D, ZHANG W L, et al. Magnetic fabric constraints on the Cenozoic compressional strain changes in the northern Qaidam marginal thrust belt and their tectonic implications[J]. Tectonics, 2020, 39(6). https://doi.org/10.1029/2019TC005989. |
[104] | DUVALL A R, CLARK M K, KIRBY E, et al. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 2013, 32(5): 1190-1211. |
[105] | 丁林, MAKSATBEK S, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学: 地球科学, 2017, 47(3): 293-309. |
[106] | MOLNAR P, STOCK J M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3): TC3001. |
[107] | HUANG K N, OPDYKE N D, LI J G, et al. Paleomagnetism of Cretaceous rocks from eastern Qiangtang terrane of Tibet[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B2): 1789-1799. |
[108] | YAN M D, ZHANG D W, FANG X M, et al. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: implications for the evolution of the Paleo- and Meso-Tethys[J]. Gondwana Research, 2016, 39: 292-316. |
[109] | TONG Y B, YANG Z Y, WANG H, et al. The Cenozoic rotational extrusion of the Chuan Dian Fragment: new paleomagnetic results from Paleogene red-beds on the southeastern edge of the Tibetan Plateau[J]. Tectonophysics, 2015, 658: 46-60. |
[110] | TONG Y B, YANG Z Y, MAO C P, et al. Paleomagnetism of Eocene red-beds in the eastern part of the Qiangtang terrane and its implications for uplift and southward crustal extrusion in the southeastern edge of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2017, 475: 1-14. |
[111] | LI S H, ADVOKAAT E L, HINSBERGEN D J J V, et al. Paleomagnetic constraints on the Mesozoic-Cenozoic paleolatitudinal and rotational history of Indochina and South China: review and updated kinematic reconstruction[J]. Earth-Science Reviews, 2017, 171: 58-77. |
[112] | ZHANG Y, HUANG W T, HUANG B C, et al. 53-43 Ma deformation of the eastern Tibet revealed by three stages of tectonic rotation in the Gongjue basin[J]. Journal of Geophysical Research: Solid Earth, 2017, 123(5): 3320-3338. |
[113] | LI S H, VAN HINSBERGEN D J, NAJMAN Y, et al. Does pulsed Tibetan deformation correlate with Indian plate motion changes?[J]. Earth and Planetary Science Letters, 2020, 536: 116144. |
[114] | ZHANG W L, FANG X M, ZHANG T, et al. Eocene rotation of the northeastern central Tibetan Plateau indicating stepwise compressions and eastward extrusions[J]. Geophysical Research Letters, 2020, 47(17). https://doi.org/10.1029/2020GL088989. |
[115] | ROWLEY D B, CURRIE B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. |
[116] | ROHRMANN A, KAPP P, CARRAPA B, et al. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma[J]. Geology, 2012, 40(2): 187-190. |
[117] | CHUNG S L, LO C H, LEE T Y, et al. Diachronous uplift of the Tibetan plateau starting 40? Myr ago[J]. Nature, 1998, 394(6695): 769-773. |
[118] | LACASSIN R, VALLI F, ARNAUD N, et al. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 255-269. |
[119] | WANG E, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9): 640-645. |
[120] | LI H L, ZHANG Y Q. Zircon U-Pb geochronology of the Konggar granitoid and migmatite: constraints on the Oligo-Miocene tectono-thermal evolution of the Xianshuihe fault zone, East Tibet[J]. Tectonophysics, 2013, 606: 127-139. |
[121] |
李海龙, 张岳桥, 张长厚, 等. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义[J]. 地学前缘, 2016, 23(2): 222-237.
DOI |
[122] | LELOUP P H, LACASSIN R, TAPPONNIER P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1/2/3/4): 3-10, 13-84. |
[123] | LELOUP P H, ARNAUD N, LACASSIN R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4): 6683-6732. |
[124] | GILLEY L D, HARRISON T M, LELOUP P, et al. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2): 2127. |
[125] | SEARLE M P, YEH M W, LIN T H, et al. Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan ranges, Yunnan, SW China[J]. Geosphere, 2010, 6(4): 316-338. |
[126] | CAO S Y, LIU J L, LEISS B, et al. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China[J]. Gondwana Research, 2011, 19(4): 975-993. |
[127] | ZHANG B, ZHANG J J, ZHONG D L, et al. Structural feature and its significance of the northernmost segment of the Tertiary Biluoxueshan-Chongshan shear zone, east of the eastern Himalayan syntaxis[J]. Science China Earth Sciences, 2011, 54(7): 959-974. |
[128] | ZHANG B, ZHANG J J, CHANG Z F, et al. The Biluoxueshan transpressive deformation zone monitored by synkinematic plutons, around the eastern Himalayan syntaxis[J]. Tectonophysics, 2012, 574/575: 158-180. |
[129] | LIN T H, LO C H, CHUNG S L, et al. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: implications for crustal deformation around the eastern Himalayan syntaxis[J]. Journal of Asian Earth Sciences, 2009, 345): 674-685. |
[130] | WANG Y J, FAN W M, ZHANG Y H, et al. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: implications for early Oligocene tectonic extrusion of SE Asia[J]. Tectonophysics, 2006, 418(3/4): 235-254. |
[131] | WANG G, WAN J L, WANG E, et al. Late Cenozoic to recent transtensional deformation across the southern part of the Gaoligong shear zone between the Indian plate and SE margin of the Tibetan plateau and its tectonic origin[J]. Tectonophysics, 2008, 460(1/2/3/4): 1-20. |
[132] | DONG Y L, CAO S Y, NEUBAUER F, et al. Exhumation of the crustal-scale Gaoligong strike-slip shear belt in SE Asia[J]. Journal of the Geological Society, 2022, 179(2): 1-21. |
[133] | MORLEY C K, ARBOIT F. Dating the onset of motion on the Sagaing fault: evidence from detrital zircon and titanite U-Pb geochronology from the North Minwun Basin, Myanmar[J]. Geology, 2019, 47(6): 581-585. |
[1] | 王大华, 王金铎, 肖永军, 李军亮. 柴北缘大柴旦地区山前带构造建模及演化研究[J]. 地学前缘, 2016, 23(5): 1-10. |
[2] | 陈世悦, 刘金, 马帅, 刘成林. 柴北缘东段克鲁克组泥页岩储层特征[J]. 地学前缘, 2016, 23(5): 56-65. |
[3] | 程荣, 肖永军, 林会喜, 柳忠泉, 王大华. 柴达木盆地北缘东段石炭系残留分布及控制因素[J]. 地学前缘, 2016, 23(5): 75-85. |
[4] | 张跃, 陈世悦, 孙娇鹏, 马寅生, 刘成林. 柴北缘石炭系克鲁克组泥页岩岩相特征与沉积环境分析[J]. 地学前缘, 2016, 23(5): 86-94. |
[5] | 杨元元, 马寅生, 刘成林, 程海艳. 风化作用对烃源岩有机质丰度的影响:以柴北缘石灰沟克鲁克组为例[J]. 地学前缘, 2016, 23(5): 113-118. |
[6] | 张旭, 刘成林, 徐韵, 马寅生. 活动大陆构造边缘碳沥青形成与金属成矿探讨:以柴北缘滩涧山地区滩涧山群为例[J]. 地学前缘, 2016, 23(5): 146-157. |
[7] | 邵龙义,刘磊,文怀军. 柴北缘盆地YQ-1井中侏罗统石门沟组泥页岩纳米孔隙特征及影响因素[J]. 地学前缘, 2016, 23(1): 164-173. |
[8] | 邵龙义,李猛,李永红,张云鹏,鲁静,张文龙,田政,文怀军. 柴达木盆地北缘侏罗系页岩气地质特征及控制因素[J]. 地学前缘, 2014, 21(4): 311-322. |
[9] | 方世虎, 赵孟军, 张水昌, 马达德, 张永庶, 孟庆洋. 柴达木盆地北缘构造控藏特征与油气勘探方向[J]. 地学前缘, 2013, 20(5): 132-138. |
[10] | 张贵宾,张立飞. 柴北缘沙柳河地区洋壳超高压变质单元中异剥钙榴岩的发现及其地质意义[J]. 地学前缘, 2011, 18(2): 151-157. |
[11] | 李德威. 东昆仑、玉树、汶川地震的发生规律和形成机理:兼论大陆地震成因与预测[J]. 地学前缘, 2010, 17(5): 179-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||