[1] |
KOH C A, SLOAN E D. Natural gas hydrates: Recent advances and challenges in energy and environmental applications[J]. AIChE Journal, 2007, 53(7): 1636-1643.
|
[2] |
刘圣乾, 刘晖, 姜在兴, 等. 青海南部冻土区天然气水合物成藏控制因素[J]. 地学前缘, 2017, 24(6): 242-253.
DOI
|
[3] |
杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.
DOI
|
[4] |
BOSWELL R, COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215.
|
[5] |
MILKOV A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197.
|
[6] |
姚伯初, 吴能友. 天然气水合物: 石油天然气的未来替代能源[J]. 地学前缘, 2005, 12(1): 225-233.
|
[7] |
MAKOGON Y F, HOLDITCH S A, MAKOGON T Y. Natural gas hydrate: a potential energy source for the 21st century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/3): 14-31.
|
[8] |
KURIHARA M, SATO A, FUNATSU K, et al. Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada[C]// Proceedings of international oil and gas conference and exhibition in China. Beijing: Society of Petroleum Engineers, 2010: SPE132155.
|
[9] |
BOSWELL R, SCHODERBEK D, COLLETT T S, et al. The Ignik Sikumi field experiment, Alaska north slope: design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs[J]. Energy & Fuels, 2017, 31(1): 140-153.
|
[10] |
CHEN L, FENG Y C, OKAJIMA J, et al. Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 55-66.
|
[11] |
YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209.
|
[12] |
YAMAMOTO K, WANG X X, TAMAKI M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. RSC Advances, 2019, 9(45): 25987-26013.
|
[13] |
CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652.
|
[14] |
YANG M J, ZHAO J, ZHENG J N, et al. Hydrate reformation characteristics in natural gas hydrate dissociation process: a review[J]. Applied Energy, 2019, 256: 113878.
|
[15] |
李彦龙. 南海目标区块天然气水合物开发井控砂介质堵塞模拟与控砂参数优化研究[D]. 武汉: 中国地质大学(武汉), 2021.
|
[16] |
LI G, MORIDIS G J, ZHANG K N, et al. Evaluation of gas production potential from marine gas hydrate deposits in Shenhu area of South China Sea[J]. Energy & Fuels, 2010, 24(11): 6018-6033.
|
[17] |
AHN T, PARK C, LEE J, et al. Experimental characterization of production behaviour accompanying the hydrate reformation in methane-hydrate-bearing sediments[J]. Journal of Canadian Petroleum Technology, 2012, 51(1): 14-19.
|
[18] |
SHEN Z C, WANG D, ZHENG T Y. Numerical simulations of the synthetic processes and consequences of secondary hydrates during depressurization of a horizontal well in the hydrates production[J]. Energy, 2023, 263(B): 125675.
|
[19] |
OSHIMA M, SHIMADA W, HASHIMOTO S, et al. Memory effect on semi-clathrate hydrate formation: a case study of tetragonal tetra-n-butyl ammonium bromide hydrate[J]. Chemical Engineering Science, 2010, 65(20): 5442-5446.
|
[20] |
UCHIDA T, YAMAZAKI K, GOHARA K. Generation of micro- and nano-bubbles in water by dissociation of gas hydrates[J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1749-1755.
|
[21] |
KOU X, LI X S, WANG Y, et al. Distribution and reformation characteristics of gas hydrate during hydrate dissociation by thermal stimulation and depressurization methods[J]. Applied Energy, 2020, 277: 115575.
|
[22] |
OUYANG Q, PANDEY J S, YAO X, et al. Visualization of CH4/CO2 hydrate dissociation and reformation during multistep depressurization assisted by pore-scale X-ray computed tomography[J]. Gas Science and Engineering, 2023, 113: 204952.
|
[23] |
LI Y L, WU N Y, NING F L, et al. Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation[J]. Energy, 2020, 206: 118030.
|
[24] |
LI X S, ZHANG Y, LI G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator[J]. Energy & Fuels, 2011, 25(10): 4497-4505.
|
[25] |
王心博, 王路君, 朱斌, 等. 水合物储层伺服降压开采模型试验研究[J]. 岩土力学, 2022, 43(9): 2360-2370.
|
[26] |
WANG Y, FENG J C, LI X S, et al. Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation[J]. Energy, 2018, 152: 34-45.
|
[27] |
朱斌, 王路君, 杨颂清, 等. 天然气水合物降压开采超重力模拟系统: CN108490151A[P]. 2018-2-04.
|
[28] |
ZHU B, WANG L J, YANG S Q, et al. Pressure-control temperature-control hypergravity experimental device for simulating deep-sea seabed responses: US11187691B2[P]. 2021-2-30.
|
[29] |
王路君, 王鹏, 朱斌, 等. 水合物开采模拟超重力试验装置的研发及应用[J]. 岩土工程学报, 2024, 46(2): 316-324.
|
[30] |
SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359.
|
[31] |
HYODO M, LI Y H, YONEDA J, et al. A comparative analysis of the mechanical behavior of carbon dioxide and methane hydrate-bearing sediments[J]. American Mineralogist, 2014, 99(1): 178-183.
|
[32] |
颜荣涛, 韦昌富, 傅鑫晖, 等. 水合物赋存模式对含水合物土力学特性的影响[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4115-4122.
|
[33] |
KNEAFSEY T J, TOMUTSA L, MORIDIS G J, et al. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 108-126.
|
[34] |
ZIRRAHI M, HASSANZADEH H, ABEDI J. Prediction of CO2 solubility in bitumen using the cubic-plus-association equation of state (CPA-EoS)[J]. The Journal of Supercritical Fluids, 2015, 98: 44-49.
|
[35] |
WANG D G, WANG C C, LI C F, et al. Effect of gas hydrate formation and decomposition on flow properties of fine-grained quartz sand sediments using X-ray CT based pore network model simulation[J]. Fuel, 2018, 226: 516-526.
|
[36] |
袁思敏, 王路君, 朱斌, 等. 考虑固相分解的含水合物沉积物体积应变分析模型[J]. 岩土工程学报, 2022, 44(6): 1044-1052.
|