地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 206-215.DOI: 10.13745/j.esf.sf.2024.11.21

• 南海北部天然气水物储层精细评价及实验模拟技术 • 上一篇    下一篇

砂质沉积物内水合物降压开采时井管水合物二次生成效应研究

王鹏1(), 王路君1,2,*(), 朱斌1,2, 王心博1, 陈云敏1,2   

  1. 1.浙江大学软弱土与环境土工教育部重点实验室, 浙江 杭州 310058
    2.浙江大学超重力研究中心, 浙江 杭州 310058
  • 收稿日期:2023-09-01 修回日期:2024-11-20 出版日期:2025-03-25 发布日期:2025-03-25
  • 通信作者: *王路君(1985—),男,博士,副教授,主要从事水合物沉积物力学特性和土体多相多场耦合方面的教学和研究。E-mail:lujunwang@zju.edu.cn
  • 作者简介:王 鹏(1998—),男,博士研究生,主要从事水合物开采模型实验和数值计算研究。E-mail:12012041@zju.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金项目(226-2023-00083);国家自然科学基金项目(52127815);国家自然科学基金项目(51988101);国家自然科学基金项目(52078458)

The effects of hydrate reformation in production wells on gas recovery from sandy hydrate bearing sediments

WANG Peng1(), WANG Lujun1,2,*(), ZHU Bin1,2, WANG Xinbo1, CHEN Yunmin1,2   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
    2. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
  • Received:2023-09-01 Revised:2024-11-20 Online:2025-03-25 Published:2025-03-25

摘要: 降压法被普遍视为目前最经济有效的天然气水合物开采方法。水合物降压开采过程中井周及井管内易发生水合物二次生成,这会阻碍液气渗流和分解气产出,极端情况下可能造成开采设备损坏,显著影响开采效率和可持续性。利用水合物伺服降压开采实验装置,将开采井管设置于沉积物内水合物模型上覆水层,实现降压开采时开采井管内水气共存且处于流通状态。通过不同降压速率下水合物储层模型降压开采试验,探索了开采井管水合物二次生成效应及其对沉积物内水合物孔隙压力、温度、产气、变形等参数的影响。结果表明:水合物降压开采过程中井管内发生的水合物二次生成导致分解气产出呈现周期性,井管内气体流动受阻时水合物分解速率因传质受阻而降低;降压速率越高,开采前期峰值产气速率越高,但井管水合物二次生成也更显著,致使难以达到总体产气效率最优;现场多井开采时,应根据储层渗透系数、温度、压力等条件选择合适的降压速率并选择性启闭各井,利用闭井期环境补充显热并提高有效产气速率。

关键词: 水合物, 沉积物, 开采井, 水合物二次生成, 降压速率

Abstract:

The depressurization method is widely regarded as one of the most economical and efficient methods for recovery from natural gas hydrate reservoirs. Hydrate reformation usually occurs around and inside the wellbore, hindering fluid flow, which may cause damage to engineering equipment and significantly affect the efficiency and sustainability of gas production. Based on the hydrate exploitation modeling apparatus developed by Zhejiang University, the hydrate reformation effect under different depressurizing rates and its impact on the pressure, temperature, gas production, and deformation of the hydrate bearing sediment are investigated. Results indicate that the reformation of hydrate in the wellbore causes the cyclic production of hydrate dissociation gas, significantly affecting the temperature and pressure of the reservoir. The dissociation rate decreased due to mass transfer obstruction when the wellbore flow was obstructed. The higher the depressurizing rate, the higher the peak of gas production rate; however, the higher average gas production rate can not be achieved due to the more significant hydrate reformation in the wellbore. During field multiwell exploitation, an appropriate depressurizing rate should be selected based on reservoir permeability, temperature, pressure, and other conditions, and each well can be opened and closed alternately so that the effective gas production rate can be increased by utilizing the ambient supplemental sensible heat during the well closure period.

Key words: hydrate, sediments, wellbore, hydrate reformation, depressurizing rate

中图分类号: