地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 216-229.DOI: 10.13745/j.esf.sf.2024.11.23
• 南海北部天然气水合物设备研制与工程开发 • 上一篇 下一篇
吴能友1,2,3(), 李彦龙1,3,4,*(
), 蒋宇静4, 孙金声5,6, 谢文卫2, 胡高伟1,3, 王韧5, 于彦江2, 王金堂6, 陈强1,3, 申凯翔2, 孙志文1,3, 陈明涛1,3
收稿日期:
2024-04-10
修回日期:
2024-11-20
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*李彦龙(1989—),男,博士,研究员,主要从事天然气水合物基础理论与技术领域的研究。E-mail:ylli@qnlm.ac
作者简介:
吴能友(1965—),男,博士,研究员,主要从事海洋地质与天然气水合物领域的研究工作。E-mail:wuny@ms.giec.ac.cn
基金资助:
WU Nengyou1,2,3(), LI Yanlong1,3,4,*(
), JIANG Yujing4, SUN Jinsheng5,6, XIE Wenwei2, HU Gaowei1,3, WANG Ren5, YU Yanjiang2, WANG Jintang6, CHEN Qiang1,3, SHEN Kaixiang2, SUN Zhiwen1,3, CHEN Mingtao1,3
Received:
2024-04-10
Revised:
2024-11-20
Online:
2025-03-25
Published:
2025-03-25
摘要:
能源结构调整和国家“双碳”战略的实施为海洋天然气水合物作为一种潜在能源开展研究提供了难得的发展空间。随着勘探开发研究的深入,海洋天然气水合物安全高效开发面临的多种类型工程地质风险管控矛盾日益凸显,亟待发展基于现代工程地质学基本原理的海洋天然气水合物工程地质学。为此,本文阐述了天然气水合物工程地质学的提出过程,并结合国内外研究进展,论述了海洋天然气水合物工程地质学的基本学科构架、核心研究任务和主要研究手段。认为海洋天然气水合物工程地质学是海洋地球系统科学的有机组成部分,其核心目标是评估海洋天然气水合物系统的地质、工程安全承载力,并对海洋天然气水合物勘探开发提供决策支撑。海洋天然气水合物工程地质学不仅能为回答勘探开发活动与海洋天然气水合物系统之间的相互作用机制提供科学依据,也能有效地将海洋天然气水合物能源研究与地质灾害、全球气候变化研究关联起来,为实现海洋天然气水合物地质、环境、工程一体化可持续发展提供一定的理论与技术支撑。
中图分类号:
吴能友, 李彦龙, 蒋宇静, 孙金声, 谢文卫, 胡高伟, 王韧, 于彦江, 王金堂, 陈强, 申凯翔, 孙志文, 陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望[J]. 地学前缘, 2025, 32(2): 216-229.
WU Nengyou, LI Yanlong, JIANG Yujing, SUN Jinsheng, XIE Wenwei, HU Gaowei, WANG Ren, YU Yanjiang, WANG Jintang, CHEN Qiang, SHEN Kaixiang, SUN Zhiwen, CHEN Mingtao. Proposal, subject connotation and prospect of marine natural gas hydrate engineering geology[J]. Earth Science Frontiers, 2025, 32(2): 216-229.
图4 海洋天然气水合物系统工程地质响应行为的多尺度实验模拟技术体系示意(据文献[26,38,65,70,73⇓-75]修改)
Fig.4 Multi-scale experimental simulation technology system of geological response behavior of marine gas hydrate system engineering. Modified after [26,38,65,70,73⇓-75].
[1] | 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11. |
[2] | YU Y S, ZHANG X W, LIU J W, et al. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
[3] | HOVLAND M T, ROY S. Shallow gas hydrates near 64° N, off mid-Norway: concerns regarding drilling and production technologies[M]//MIENERT J, BERNDT C, TRÉHU A M, et al. World atlas of submarine gas hydrates in continental margins. Cham: Springer International Publishing, 2022: 15-32. |
[4] | YAMAMOTO K, WANG X X, TAMAKI M, et al. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir[J]. Royal Society of Chemistry Advances, 2019, 9(45): 25987-26013. |
[5] | 中国国土资源部. 国务院批准天然气水合物成为我国第173个矿种[R/OL]. (2017-2-16) [2024-2-17]. https://www.cgs.gov.cn/xwl/ddyw/201711/t20171117_444111.html. |
[6] | 吴能友, 李彦龙, 万义钊, 等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 2020, 40(8): 100-115. |
[7] | 王思敬. 工程地质学的任务与未来[J]. 工程地质学报, 1999, 7(3): 195-199. |
[8] | 施斌. 我国工程地质学发展战略的思考[J]. 工程地质学报, 2005, 13(4): 433-436. |
[9] | LI Y L, WU N Y, GAO D L, et al. Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production[J]. Energy, 2021, 219: 119585. |
[10] |
李彦龙, 胡高伟, 刘昌岭, 等. 天然气水合物开采井防砂充填层砾石尺寸设计方法[J]. 石油勘探与开发, 2017, 44(6): 961-966.
DOI |
[11] | DING J P, CHENG Y F, YAN C L, et al. Experimental study of sand control in a natural gas hydrate reservoir in the South China sea[J]. International Journal of Hydrogen Energy, 2019, 44(42): 23639-23648. |
[12] | ZHANG Y Q, WANG W, ZHANG P P, et al. A solution to sand production from natural gas hydrate deposits with radial wells: Combined gravel packing and sand screen[J]. Journal of Marine Science and Engineering, 2022, 10(1): 71. |
[13] | KONNO Y, FUJII T, SATO A, et al. Key Findings of the World’s First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production[J]. Energy & Fuels, 2017, 31(3): 2607-2616. |
[14] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[15] | WU N Y, LI Y L, CHEN Q, et al. Sand Production Management during Marine Natural Gas Hydrate Exploitation: Review and an Innovative Solution[J]. Energy & Fuels, 2021, 35(6): 4617-4632. |
[16] | 董长银, 钟奕昕, 武延鑫, 等. 水合物储层高泥质细粉砂筛管挡砂机制及控砂可行性评价试验[J]. 中国石油大学学报(自然科学版), 2018, 4 2(6): 79-87. |
[17] | DONG C Y, WANG L Z, ZHOU Y G, et al. Microcosmic retaining mechanism and behavior of screen media with highly argillaceous fine sand from natural gas hydrate reservoir[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103618. |
[18] | LI Y L, WU N Y, NING F L, et al. Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation[J]. Energy, 2020, 206: 118030. |
[19] | HOVLAND M. Deep-water coral reefs: Unique biodiversity hot-spots[M]. 1st ed, Berlin: Springer, 2008: 13-37. |
[20] | WANG F T, ZHAO B, LI G. Prevention of potential hazards associated with marine gas hydrate exploitation: A review[J]. Energies, 2018, 11(9): 2384. |
[21] | HOVLAND M, FRANCIS T J G, CLAYPOOL G E, et al. Strategy for scientific drilling of marine gas hydrates[J]. JOIDES Journal, 1998, 25(1): 20-24. |
[22] | MH21-S R&D Consortium for methane hydrate in sand. 2022年砂层甲烷水合物论坛: 探索性和简化生产实验调查[R/OL]. (2022-2-07) [2024-2-17]. https://www.mh21japan.gr.jp/pdf/mh21form2022/doc06.pdf. |
[23] | MH21-S R&D Consortium for methane hydrate in sand. 2022年砂层甲烷水合物论坛: 下一阶段海洋产出试验系统的检讨[R/OL]. (2022-2-07) [2024-2-17]. https://www.mh21japan.gr.jp/pdf/mh21form2022/doc04.pdf. |
[24] | LI Y L, HU G W, WU N Y, et al. Undrained shear strength evaluation for hydrate-bearing sediment overlying strata in the Shenhu area, northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(3): 114-123. |
[25] | GÜLER E, AFACAN K B. Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests[J]. Geomechanics and Engineering, 2021, 24(2): 105-113. |
[26] | LIU Z C, NING F L, HU G W, et al. Characterization of seismic wave velocity and attenuation and interpretation of tetrahydrofuran hydrate-bearing sand using resonant column testing[J]. Marine and Petroleum Geology, 2020, 122: 104620. |
[27] | YANG J, HASSANPOURYOUZBAND A, TOHIDI B, et al. Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate-bearing Permafrost Sediments[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3): 2551-2563. |
[28] | LI Y L, DONG L, WU N Y, et al. Influences of hydrate layered distribution patterns on triaxial shearing characteristics of hydrate-bearing sediments[J]. Engineering Geology, 2021, 294: 106375. |
[29] | XU J L, XU C S, HUANG L H, et al. Strength estimation and stress-dilatancy characteristics of natural gas hydrate-bearing sediments under high effective confining pressure[J]. Acta Geotechnica, 2023, 18(2): 811-827. |
[30] | CHOI J H, DAI S, LIN J S, et al. Multistage Triaxial Tests on Laboratory-formed Methane Hydrate-bearing Sediments[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3347-3357. |
[31] | 李彦龙, 刘昌岭, 廖华林, 等. 泥质粉砂沉积物: 天然气水合物混合体系的力学特性[J]. 天然气工业, 2020, 40(8): 159-168. |
[32] | KIMURA S, KANEKO H, ITO T, et al. Investigation of fault permeability in sands with different mineral compositions (evaluation of gas hydrate reservoir)[J]. Energies, 2015, 8(7): 7202-7223. |
[33] | KIMURA S, KANEKO H, ITO T, et al. The effect of effective normal stress on particle breakage, porosity and permeability of sand: Evaluation of faults around methane hydrate reservoirs[J]. Tectonophysics, 2014, 630: 285-299. |
[34] | KIMURA S, ITO T, NODA S, et al. Water permeability evolution with faulting for unconsolidated turbidite sand in a gas-hydrate reservoir in the eastern Nankai trough area of Japan[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 13415-13426. |
[35] | 吴能友, 李彦龙, 刘乐乐, 等. 海洋天然气水合物储层蠕变行为的主控因素与研究展望[J]. 海洋地质与第四纪地质, 2021, 41(5): 3-11. |
[36] | HU T, WANG H N, JIANG M J. Analytical approach for the fast estimation of time-dependent wellbore stability during drilling in methane hydrate-bearing sediment[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104422. |
[37] | LI Y H, LIU W G, SONG Y C, et al. Creep behaviors of methane hydrate coexisting with ice[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 347-354. |
[38] | YOSHIMOTO M, KIMOTO S. Undrained creep behavior of CO2 hydrate-bearing sand and its constitutive modeling considering the cementing effect of hydrates[J]. Soils and Foundations, 2022, 62(1): 101095. |
[39] | LI Y L, YU G G, XU M, et al. Interfacial strength between ice and sediment: a solution towards fracture-filling hydrate system[J]. Fuel, 2022, 330: 125553. |
[40] |
李淑霞, 郭尚平, 陈月明, 等. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议[J]. 力学学报, 2020, 52(3): 828-842.
DOI |
[41] | 万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4): 117-128. |
[42] | LI Y L, WU N Y, NING F L, et al. A sand-production control system for gas production from clayey silt hydrate reservoirs[J]. China Geology, 2019, 2(2): 121-132. |
[43] | WAN Y Z, WU N Y, CHEN Q, et al. Coupled thermal-hydrodynamic-mechanical-chemical numerical simulation for gas production from hydrate-bearing sediments based on hybrid finite volume and finite element method[J]. Computers and Geotechnics, 2022, 145: 104692. |
[44] | JI Y K, HOU J, ZHAO E M, et al. Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low-field NMR technique[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018572. |
[45] | JI Y K, KNEAFSEY T J, HOU J, et al. Relative permeability of gas and water flow in hydrate-bearing porous media: a micro-scale study by lattice Boltzmann simulation[J]. Fuel, 2022, 321: 124013. |
[46] | JIN Y R, LI Y L, WU N Y, et al. Characterization of sand production for clayey-silt sediments conditioned to openhole gravel-packing: experimental observations[J]. Society of Petroleum Engineers Journal, 2021, 26(6): 3591-3608. |
[47] | JIN Y R, WU N Y, LI Y L, et al. Characterization of sand production for clayey-silt sediments conditioned to hydraulic slotting and gravel packing: experimental observations, theoretical formulations, and modeling[J]. Society of Petroleum Engineers Journal, 2022, 27(6): 3704-3723. |
[48] | QI M H, LI Y L, MOGHANLOO R G, et al. A novel approach to predict sand production rate through gravel packs in unconsolidated sediment applying the theory of free fall arch[J]. Society of Petroleum Engineers Journal, 2023, 28(1): 415-428. |
[49] | LI Y L, NING F L, XU M, et al. Experimental study on solid particle migration and production behaviors during marine natural gas hydrate dissociation by depressurization[J]. Petroleum Science, 2023, 20(6): 3610-3623. |
[50] | FANG X Y, NING F L, WANG L J, et al. Dynamic coupling responses and sand production behavior of gas hydrate-bearing sediments during depressurization: An experimental study[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108506. |
[51] | LU J S, LI D L, LIANG D Q, et al. An innovative experimental apparatus for the analysis of sand production during natural gas hydrate exploitation[J]. Review of Scientific Instruments, 2021, 92(10): 105110. |
[52] | 刘浩伽, 李彦龙, 刘昌岭, 等. 水合物分解区地层砂粒启动运移临界流速计算模型[J]. 海洋地质与第四纪地质, 2017, 37(5): 166-173. |
[53] | ZHU H X, XU T F, YUAN Y L, et al. Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration[J]. Applied Energy, 2020, 275: 115384. |
[54] | LI Y L, NING F L, WU N Y, et al. Protocol for sand control screen design of production wells for clayey silt hydrate reservoirs: A case study[J]. Energy Science & Engineering, 2020, 8(5): 1438-1449. |
[55] | SUMMERHAYES C P, BORNHOLD B D, EMBLEY R W. Surficial slides and slumps on the continental slope and rise of South West Africa: A reconnaissance study[J]. Marine Geology, 1979, 31(3/4): 265-277. |
[56] | CARPENTER G. Coincident sediment slump/clathrate complexes on the U. S. Atlantic continental slope[J]. Geo-Marine Letters, 1981, 1(1): 29-32. |
[57] | BUGGE T, BEFRING S, BELDERSON R H, et al. A giant three-stage submarine slide off Norway[J]. Geo-Marine Letters, 1987, 7(4): 191-198. |
[58] | SCHOLZ N A, RIEDEL M, URLAUB M, et al. Submarine landslides offshore Vancouver Island along the northern Cascadia margin, British Columbia: why preconditioning is likely required to trigger slope failure[J]. Geo-Marine Letters, 2016, 36(5): 323-337. |
[59] | KAYEN R E, LEE H J. Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin[J]. Marine Geotechnology, 1991, 10(1/2): 125-141. |
[60] | PILCHER R, ARGENT J. Mega-pockmarks and linear pockmark trains on the West African continental margin[J]. Marine Geology, 2007, 244(1/2/3/4): 15-32. |
[61] | 孟祥君, 张训华, 韩波, 等. 海底泥火山地球物理特征[J]. 海洋地质前沿, 2012, 28(12): 6-9, 45. |
[62] | MILKOV A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197. |
[63] | TAN L, LIU F, HUANG Y, et al. Production-induced instability of a gentle submarine slope: Potential impact of gas hydrate exploitation with the huff-puff method[J]. Engineering Geology, 2021, 289: 106174. |
[64] | 毛佩筱, 吴能友, 宁伏龙, 等. 不同井型下的天然气水合物降压开采产气产水规律[J]. 天然气工业, 2020, 40(11): 168-176. |
[65] | SPANGENBERG E, HEESCHEN K U, GIESE R, et al. “Ester”—a new ring-shear-apparatus for hydrate-bearing sediments[J]. Review of Scientific Instruments, 2020, 91(6): 064503. |
[66] | LEE J Y, FRANCISCA F M, SANTAMARINA J C, et al. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties[J]. Journal of Geophysical Research: Solid Earth, 2010, 115: B11105. |
[67] | SCHAEFFER K, BEARCE R, WANG J. Dynamic modulus and damping ratio measurements from free-free resonance and fixed-free resonant column procedures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2145-2155. |
[68] | 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. |
[69] | 李彦龙, 陈强, 刘昌岭, 等. 水合物储层工程地质参数评价系统研发与功能验证[J]. 海洋地质与第四纪地质, 2020, 40(5): 192-200. |
[70] | LIU Z C, DAI S, NING F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophysical Research Letters, 2018, 45(2): 715-723. |
[71] | LI R, ZHOU Y F, ZHAN W B, et al. Pore-scale modelling of elastic properties in hydrate-bearing sediments using 4-D synchrotron radiation imaging[J]. Marine and Petroleum Geology, 2022, 145: 105864. |
[72] | 彭力, 宁伏龙, 李维, 等. 用原子力显微镜研究温度和接触界面对THF水合物形貌的影响[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 144-152. |
[73] | 姬美秀, 陈云敏, 黄博. 弯曲元试验高精度测试土样剪切波速方法[J]. 岩土工程学报, 2003, 25(6): 732-736. |
[74] | DONG L, LI Y L, LIAO H L, et al. Strength estimation for hydrate-bearing sediments based on triaxial shearing tests[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106478. |
[75] |
CAO P Q, SHENG J L, WU J Y, et al. Mechanical creep instability of nanocrystalline methane hydrates[J]. Physical Chemistry Chemical Physics, 2021, 23(5): 3615-3626.
DOI PMID |
[76] |
袁益龙, 许天福, 辛欣, 等. 海洋天然气水合物降压开采地层井壁力学稳定性分析[J]. 力学学报, 2020, 52(2): 544-555.
DOI |
[77] | DONG L, LI Y L, WU N Y, et al. Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems[J]. Energy, 2023, 265: 126382. |
[78] | 郭朝斌, 张可霓, 凌璐璐. 天然气水合物数值模拟方法及其应用[J]. 上海国土资源, 2013, 34(2): 71-75, 79. |
[79] | MAO P X, SUN J X, NING F L, et al. Numerical simulation on gas production from inclined layered methane hydrate reservoirs in the Nankai trough: A case study[J]. Energy Reports, 2021, 7: 8608-8623. |
[80] | CHEN M T, LI Y L, ZHANG P H, et al. Numerical simulation of failure properties of interbedded hydrate-bearing sediment and their implications on field exploitation[J]. Ocean Engineering, 2023, 274: 114030. |
[81] | 贺洁, 蒋明镜. 孔隙填充型能源土的宏微观力学特性真三轴试验离散元分析[J]. 岩土力学, 2016, 37(10): 3026-3034, 3040. |
[82] | DOU X F, LIU Z C, NING F L, et al. 3D DEM modeling on mechanical weakening of gas hydrate-bearing sandy sediments during hydrate dissociation[J]. Computers and Geotechnics, 2023, 154: 105116. |
[83] | JIANG M J, LIU J, SHEN Z F. Investigating the mechanical behavior of grain-coating type methane hydrate bearing sediment in true triaxial compression tests by distinct element method[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(3): 034613. |
[84] | SUN X, LUO H, SOGA K. 基于COMSOL Multiphysics天然气水合物沉积物热-水-力-化多场耦合模型研究(英文)[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2018, 19(8): 600-623. |
[85] | KOURETZIS G P, SHENG D C, WANG D. Numerical simulation of cone penetration testing using a new critical state constitutive model for sand[J]. Computers and Geotechnics, 2014, 56: 50-60. |
[86] | 张峰, 刘丽华, 吴能友, 等. 含天然气水合物沉积介质力学本构关系及数值模拟研究现状[J]. 新能源进展, 2017, 5(6): 443-449. |
[87] | 孙嘉鑫. 钻采条件下南海水合物储层响应特性模拟研究[D]. 武汉: 中国地质大学(武汉), 2018. |
[88] | 朱慧星. 天然气水合物开采储层出砂过程及对产气影响的数值模型研究[D]. 长春: 吉林大学, 2021. |
[89] | CHEN M T, LI Y L, ZHANG Y J, et al. Recent advances in creep behaviors characterization for hydrate-bearing sediment[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113434. |
[90] | YAN C L, LI Y, YAN X J, et al. Wellbore shrinkage during drilling in methane hydrate reservoirs[J]. Energy Science & Engineering, 2019, 7(3): 930-942. |
[91] | MI F Y, HE Z J, JIANG G S, et al. Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores[J]. Energy, 2023, 276: 127496. |
[92] | HU Y, CHEN Z X, JIANG Q H, et al. Probing the mechanism of salts destroying the cage structure of methane hydrate by molecular dynamics simulation[J]. Geoenergy Science and Engineering, 2023, 223: 211523. |
[93] | LIN Y W, LI T, LIU S Y, et al. Interfacial mechanical properties of tetrahydrofuran hydrate-solid surfaces: Implications for hydrate management[J]. Journal of Colloid and Interface Science, 2023, 629: 326-335. |
[94] | SHEN S, LI Y H, SUN X, et al. Analysis of the mechanical properties of methane hydrate-bearing sands with various pore pressures and confining pressures[J]. Journal of Natural Gas Science and Engineering, 2021, 87: 103786. |
[95] | 李彦龙, 陈强, 胡高伟, 等. 神狐海域W18/19区块水合物上覆层水平渗透系数分布[J]. 海洋地质与第四纪地质, 2019, 39(2): 157-163. |
[1] | 杨金秀, 王琛, 邢兰昌, 魏伟, 张伟, 韩维峰, 赵丽, 刘坤一. 海域天然气水合物相关的流体运移及海底甲烷渗漏研究[J]. 地学前缘, 2025, 32(2): 113-125. |
[2] | 姬梦飞, 王吉亮, 王伟巍, 张杰城, 刘雪芹, 吴时国. 神狐海域细粒沉积物水合物储层的地球物理特征研究[J]. 地学前缘, 2025, 32(2): 126-139. |
[3] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[4] | 管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165. |
[5] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
[6] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
[7] | 王秀娟, 韩磊, 刘俊州, 靳佳澎, 匡增桂, 周吉林. 天然气水合物与游离气共存的地球物理特征与识别[J]. 地学前缘, 2025, 32(2): 20-35. |
[8] | 赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 2025, 32(2): 36-60. |
[9] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[10] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[11] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[12] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[13] | 刘圣乾,刘晖,姜在兴,夏中源,庞守吉,马文贤. 青海南部冻土区天然气水合物成藏控制因素[J]. 地学前缘, 2017, 24(6): 242-253. |
[14] | 孙春岩,赵浩,贺会策,张志冰,竺玮煌,孙逊,尹文斌,凌帆. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘, 2017, 24(6): 225-241. |
[15] | 何涛,卢海龙,林进清,董一飞,何健. 海域天然气水合物开发的地球物理监测[J]. 地学前缘, 2017, 24(5): 368-382. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||