地学前缘 ›› 2022, Vol. 29 ›› Issue (2): 28-44.DOI: 10.13745/j.esf.sf.2022.2.5
• 俯冲碰撞与岩浆活动、变质作用与成矿系统 • 上一篇 下一篇
王涛1,2,*(), 张建军1,3,*(
), 李舢1,3, 童英1,2,3, 郭磊1,3, 张晓伟3, 黄河1,3, 张磊1,3, 薛怀民3
收稿日期:
2022-02-03
修回日期:
2022-02-27
出版日期:
2022-03-25
发布日期:
2022-03-31
通信作者:
王涛,张建军
基金资助:
WANG Tao1,2,*(), ZHANG Jianjun1,3,*(
), LI Shan1,3, TONG Ying1,2,3, GUO Lei1,3, ZHANG Xiaowei3, HUANG He1,3, ZHANG Lei1,3, XUE Huaimin3
Received:
2022-02-03
Revised:
2022-02-27
Online:
2022-03-25
Published:
2022-03-31
Contact:
WANG Tao,ZHANG Jianjun
摘要:
东北亚大地构造发展经历了古亚洲洋、蒙古—鄂霍茨克洋和古太平洋的俯冲-碰撞作用。如何鉴别和厘定这三种构造体制的时空影响范围和叠合过程一直是一个难题。本文通过巨型岩浆岩带的建库编图,揭示了该地区晚古生代—中生代岩浆岩的时空迁移规律;据此,探讨和厘定了这三大板块构造体制的时空分布范围和构造叠合过程。二叠纪到三叠纪早期间,古亚洲洋体制经历了俯冲到碰撞,主要作用于阿拉善—华北北缘—大兴安岭一带;期间,鄂霍茨克洋主要为陆缘环境,影响范围限于中北部蒙古—外贝加尔一带,并在侏罗纪逐渐向蒙古—鄂霍茨克主缝合带迁移,到白垩纪,其造山带伸展垮塌阶段,影响范围增大,远程效应波及阿拉善—华北北缘—大兴安岭一带,叠加于古亚洲洋体制产物之上。古太平洋构造体制主要发育于三叠纪—侏罗纪时期,其平板俯冲影响范围抵达大兴安岭—太行山,在白垩纪,俯冲板片后撤,影响范围迁移至东亚大陆最东缘。这些作用叠加于古亚洲洋体制产物之上;并与蒙古—鄂霍茨克洋体制同时叠合于大兴安岭一带。
中图分类号:
王涛, 张建军, 李舢, 童英, 郭磊, 张晓伟, 黄河, 张磊, 薛怀民. 东北亚晚古生代—中生代岩浆时空演化:多重板块构造体制范围及叠合的鉴别证据[J]. 地学前缘, 2022, 29(2): 28-44.
WANG Tao, ZHANG Jianjun, LI Shan, TONG Ying, GUO Lei, ZHANG Xiaowei, HUANG He, ZHANG Lei, XUE Huaimin. Distinctive spatial-temporal evolution of Late Paleozoic to Mesozoic magmatic systems in Northeast Asia: Evidences for identification of the extent and superposition of multiple plate tectonic regimes[J]. Earth Science Frontiers, 2022, 29(2): 28-44.
图4 东北亚晚古生代(二叠纪)岩浆岩分布图及古亚洲洋和蒙古—鄂霍茨克洋构造体制范围
Fig.4 Distribution of granitoids and related igneous rocks of Northeast Asia and the extent of the PAO and MOO regimes during the Late Paleozoic (Permian).
图5 东北亚早中生代(三叠纪)岩浆岩分布图及古亚洲洋、蒙古—鄂霍茨克洋和古太平洋构造体制范围
Fig.5 Distribution of Early Mesozoic (Triassic) igneous rocks of Northeast Asia and the extent of the three tectonic regimes (PAO, MOO, PPO)
图8 东北亚PAO、MOO和PPO三大构造体制演变、转化及其叠加 (据文献[42,57]修改)
Fig.8 Generalized map of Northeast Asian, showing the evolution, transformation and superposition of the three tectonic regimes (PAO, MOO, PPO). Modified after [42, 57].
[1] | 任纪舜. 新一代中国大地构造图: 中国及邻区大地构造图(1∶5000000)附简要说明: 从全球看中国大地构造[J]. 地球学报, 2003(1):1-2. |
[2] | 董树文, 张岳桥, 陈宣华, 等. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报, 2008, 29(3):306-317. |
[3] | 李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4):584-605. |
[4] | 邓军, 葛良胜, 杨立强. 构造动力体制与复合造山作用: 兼论三江复合造山带时空演化[J]. 岩石学报, 2013, 29(4):1099-1114. |
[5] |
DENG J, WANG Q, LI G. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, 50:216-266.
DOI URL |
[6] | 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1):1-11. |
[7] | 徐备, 赵盼, 鲍庆中, 等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 2014, 30(7):1841-1857. |
[8] |
JOLIVET L, CADET J P, LALEVéE F. 1988 Mesozoic evolution of Northeast Asia and the collision of the Okhotsk microcontinent[J]. Tectonophysics, 1988, 149(1/2):89-109.
DOI URL |
[9] | 邵济安, 牟保磊, 何国琦, 等. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J]. 中国科学D辑: 地球科学, 1997, 27(5):390-394. |
[10] | 翟裕生, 吕古贤. 构造动力体制转换与成矿作用[J]. 地球学报, 2002, 23(2):97-102. |
[11] |
LI J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224.
DOI URL |
[12] |
XU W L, PEI F P, WANG F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74:167-193.
DOI URL |
[13] | 李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J]. 科学通报, 2018, 63(16):1550-1593. |
[14] |
ZHAO G, WANG Y, HUANG B, et al. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186:262-286.
DOI URL |
[15] |
LI G, ZHOU J, WILDE S A, et al. The transition from a passive to an active continental margin in the Jiamusi Block: constraints from Late Paleozoic sedimentary rocks[J]. Journal of Geodynamics, 2019, 129:131-148.
DOI URL |
[16] | LEE B C, JO H J, LEE S H, et al. Geochronology and petrogenesis of the Late Triassic A-type granitoids in the Yeongnam Massif and its implication for Late Triassic geodynamics of northeast Asia[J]. Lithos, 2021, 386:106018. |
[17] |
JING Y, GE W C, DONG Y, et al. Transition in tectonic regime from the Paleo-Asian Ocean to Paleo-Pacific Ocean: constraints from the Jurassic adakitic and I-type granites, and calc-alkaline diorites at the northern margin of the North China Craton[J]. International Geology Review, 2022, 64(4):564-595.
DOI URL |
[18] | MENG Q R, ZHOU Z H, ZHU R X, et al. Cretaceous basin evolution in northeast Asia: tectonic responses to the paleo-Pacific plate subduction[J]. National Science Review, 2022, 9(1):88. |
[19] | 赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3):319-328. |
[20] |
SHI G R. The marine permian of East and Northeast Asia: an overview of biostratigraphy, palaeobiogeography and palaeogeographical implications[J]. Journal of Asian Earth Sciences, 2006, 26:175-206.
DOI URL |
[21] | 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2):339-353. |
[22] | 孟凡超, 刘嘉麒, 崔岩, 等. 中国东北地区中生代构造体制的转变: 来自火山岩时空分布与岩石组合的制约[J]. 岩石学报, 2014, 30(12):3569-86. |
[23] | 郑建平, 牛贺才, 汤华云, 等. 鄂霍茨克洋与太平洋构造域叠合的岩浆作用与成矿响应[J]. 矿物岩石地球化学通报, 2017, 36(4):545-550. |
[24] | 周建波, 石爱国, 景妍. 东北地块群: 构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46(4):1042-1055. |
[25] |
TANG J, XU W, WANG F, et al. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia[J]. Science China Earth Sciences, 2018, 61(5):527-559.
DOI URL |
[26] | 徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报2018, 34(10):2819-2844. |
[27] |
PARFENOVA T M. Hydrocarbons of the lanostane homologous series in the Phanerozoic organic matter and their probable biologic sources[J]. Russian Geology and Geophysics, 2011, 52(8):773-780.
DOI URL |
[28] |
ZHOU J B, LI L. The Mesozoic accretionary complex in Northeast China: evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences, 2017, 145:91-100.
DOI URL |
[29] | 蒋孝君, 彭云彪, 董晓杰, 等. 蒙古—鄂霍次克鄂霍茨克洋的远程作用: 来自内蒙古东南部羊盘沟地区流纹斑岩成因的证据[J]. 地球科学, 2021, 46(9):3057-3073. |
[30] |
LI Y, XU W L, Wang F, et al. Geochronology and geochemistry of late paleozoic-early mesozoic igneous rocks of the erguna massif, NE china: implications for the early evolution of the mongol-okhotsk tectonic regime[J]. Journal of Asian Earth Sciences, 2016, 144:205-224.
DOI URL |
[31] |
LI Y, XU W L, ZHU R X, et al. Late Jurassic to early Early Cretaceous tectonic nature on the NE Asian continental margin: constraints from Mesozoic accretionary complexes[J]. Earth-Science Reviews, 2020, 200:103042.
DOI URL |
[32] | 任纪舜, 牛宝贵, 赵磊, 等. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 2019, 25(5):607-612. |
[33] |
SETON M, MÜLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3/4):212-270.
DOI URL |
[34] |
WILDE S A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction: a review of the evidence[J]. Tectonophysics, 2015, 662:345-362.
DOI URL |
[35] |
WU J T, WU J. Izanagi-Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the northeast Asian margin[J]. Geology, 2019, 47(10):953-957.
DOI URL |
[36] |
LI G Y, ZHOU J B, LI L. A new tectonic framework for the composite orogenic metallogenic systems in the east of North China: the role of the Heilongjiang Ocean in the Late Paleozoic to Mesozoic[J]. Ore Geology Reviews, 2021, 136:104293.
DOI URL |
[37] |
LIU L, LIU L J, XU Y G. Mesozoic intraplate tectonism of East Asia due to flat subduction of a composite terrane slab[J]. Earth-Science Reviews, 2021, 214:103505.
DOI URL |
[38] | 吴福元, 徐义刚, 高山, 等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 2008, 24(6):1145-1174. |
[39] | 吴福元, 徐义刚, 朱日祥, 等. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 2014, 44(11):2358-2372. |
[40] | 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8):1135-1159. |
[41] |
WU Z, YANG X, MA Y, et al. A synjournal of geochemistry of Mesozoic igneous rocks in NE China and tectonic superposition and transformation of the easternmost Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2022, 227:105032.
DOI URL |
[42] | WANG T, TONG Y, XIAO W J, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age-data[J]. National Science Review, 2022. https://doiorg/10.1093/nsr/nwab210 . |
[43] |
ZHOU J B, WILDE S A, ZHANG X Z, et al. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt[J]. Tectonophysics, 2009, 478(3):230-246.
DOI URL |
[44] |
LI S, SUO Y, LI X, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate[J]. Earth-Science Reviews, 2019, 192:91-137.
DOI URL |
[45] |
WILDE S A, ZHOU J B. The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China[J]. Journal of Asian Earth Sciences, 2015, 113:909-921.
DOI URL |
[46] |
ZHOU J B, WILDE S A, ZHAO G C, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186:76-93.
DOI URL |
[47] | XIAO W J, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):1069 |
[48] |
LIU X, ZHAO D, LI S, et al. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications[J]. Earth and Planetary Science Letters, 2017, 464:166-174.
DOI URL |
[49] |
XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three permo-triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):477-507.
DOI URL |
[50] |
WU F Y, SUN D Y, GE W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30
DOI URL |
[51] | 周建波, 韩杰, WILDE S A, 等. 吉林—黑龙江高压变质带的初步厘定: 证据和意义[J]. 岩石学报, 2013, 29(2):386-398. |
[52] | 王涛, 张磊, 郭磊, 等. 亚洲中生代花岗岩图初步编制及若干研究进展[J]. 地球学报, 2014, 35(6):655-662. |
[53] |
WANG T, TONG Y, WANG X X, et al. Some progress on understanding the Phanerozoic granitoids in China[J]. China Geology, 2018, 1:84-108.
DOI URL |
[54] | 张岳桥, 董树文. 晚中生代东亚多板块汇聚与大陆构造体系的发展[J]. 地质力学学报. 2019, 25(5):613-641. |
[55] |
ZHAO P, XU B, JAHN B M. The Mongol-Okhotsk Ocean subduction-related Permian peraluminous granites in northeastern Mongolia: constraints from zircon U-Pb ages, whole-rock elemental and Sr-Nd-Hf isotopic compositions[J]. Journal of Asian Earth Sciences, 2017, 144:225-242.
DOI URL |
[56] |
董树文, 张岳桥, 李海龙, 等. “燕山运动” 与东亚大陆晚中生代多板块汇聚构造: 纪念“燕山运动”90 周年[J]. Scientia Sinica Terrae, 2019, 49(6):913-38.
DOI URL |
[57] | WANG T, ZHENG Y, ZHANG J J, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30(6): TC6007. |
[58] |
JAHN B M, LITVINOVSKY B A, ZANYILEVICH A, et al. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: evolution, petrogenesis and tectonic significance[J]. Lithos, 2009, 113:521-539.
DOI URL |
[59] |
TONG Y, JAHN B, WANG T, et al. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: model of generation, time of emplacement and regional tectonic significance[J]. Journal of Asian Earth Sciences, 2015, 97:320-336.
DOI URL |
[60] |
EIZENHöFER P R, ZHAO G. Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186:153-172.
DOI URL |
[61] |
DONSKAYA T V, GLADKOCHUB D P, MAZUKABZOV A M. et al. Late paleozoic-mesozoic subduction-related magmatism at the southern margin of the siberian continent and the 150 million-year history of the mongol-okhotsk ocean[J]. Journal of Asian Earth Sciences, 2013, 62(30):79-97.
DOI URL |
[62] |
OROLMAA D, ERDENESAIHAN G, BORISENKO A S, et al. Permian-Triassic granitoid magmatism and metallogeny of the Hangayn (central Mongolia)[J]. Russian Geology and Geophysics, 2008, 49(7):534-544.
DOI URL |
[63] |
LI S, WANG T, WILDE S A, et al. Evolution, source, and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment)[J]. Earth-Science Reviews, 2013, 126:206-234.
DOI URL |
[64] |
WANG T, JAHN B M, KOVACH V, et al. Mesozoic Intraplate Granitic Magmatism in the Altai Accretionary Orogen, NW China: implications for the Orogenic Architecture and Crustal Growth[J]. American Journal of Science, 2014, 314:1-42.
DOI URL |
[65] | LI S, CHUNG S L, WILDE S A, et al. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: implications for ocean closure in accretionary orogens[J]. Journal of Geophysical Research: Solid Earth, 2017, 122:2291-2309. |
[66] |
YANG Q, REN Y S, HUIZENGA J M, et al. Geological significance of Early Triassic porphyry Cu mineralization in the eastern Xar Moron-Changchun Metallogenic Belt, northeast China: a case study of the newly-discovered Guokuidingzi Cu deposit[J]. Ore Geology Reviews, 2021, 133:104092.
DOI URL |
[67] |
WU D, LI S, CHEW D, et al. Permian-Triassic magmatic evolution of granitoids from the southeastern Central Asian Orogenic Belt: implications for accretion leading to collision[J]. Science China Earth Sciences, 2021, 64:788-806.
DOI URL |
[68] |
LI S, CHUNG S L, WILDE S A, et al. Linking magmatism with collision in an accretionary orogen[J]. Scientific Reports, 2011, 6:25751.
DOI URL |
[69] | 阎国翰, 牟保磊, 许保良, 等. 燕辽—阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义[J]. 中国科学D辑: 地球科学, 2000, 30(4):383-387. |
[70] |
WANG G, JIANG S, WANG P, et al. Mesozoic subduction-related accretion of micro-blocks in the East Asian Ocean-Continent Connection Zone[J]. Earth-Science Reviews, 2021, 216:103575.
DOI URL |
[71] |
TANG J, XU W L, WANG F, et al. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China[J]. Gondwana Research, 2016, 31:218-240.
DOI URL |
[72] | 纪政, 葛文春, 杨浩, 等. 大兴安岭中段晚三叠世安第斯型安山岩: 蒙古—鄂霍茨克大洋板片南向俯冲作用的产物[J]. 岩石学报, 2018, 34(10):2917-30. |
[73] |
LIU Y, WANG X, WANG D, et al. Triassic high-Mg adakitic andesites from Linxi, Inner Mongolia: insights into the fate of the Paleo-Asian ocean crust and fossil slab-derived melt-peridotite interaction[J]. Chemical Geology, 2012, 328:89-108.
DOI URL |
[74] |
ZHOU J B, CAO J L, WILDE S A, et al. Paleo-Pacific subduction-accretion: evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 2014, 33(12):2444-2466
DOI URL |
[75] |
GE M H, ZHANG J J, LI L, et al. A Triassic-Jurassic westward scissor-like subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block in NE China: constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Lesser Xing’an-Zhangguangcai Range granitoids[J]. Lithos, 2018, 302-303:263-277.
DOI URL |
[76] | CHEONG A C, JO H J, JEONG Y J, et al. Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons[J]. Bulletin, 2019, 131(3/4):609-634. |
[77] |
CHEONG A C, JO H J. Crustal evolution in the Gyeongsang Arc, southeastern Korea: geochronological, geochemical and Sr-Nd-Hf isotopic constraints from granitoid rocks[J]. American Journal of Science, 2017, 317(3):369-410.
DOI URL |
[78] |
ZHAI M, ZHANG Y, ZHANG X, et al. Renewed profile of the Mesozoic magmatism in Korean Peninsula: regional correlation and broader implication for cratonic destruction in the North China Craton[J]. Science China Earth Sciences, 2016, 59(12):2355-2388.
DOI URL |
[79] |
YIN A. Cenozoic tectonic evolution of Asia: a preliminary synjournal[J]. Tectonophysics, 2010, 488(1/2/3/4):293-325.
DOI URL |
[80] | 王涛, 郭磊, 张磊, 等. 蒙古—鄂霍茨克与古太平洋双重体制下的东北亚晚中生代花岗岩发育特点[C]// 2015年中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 2015. |
[81] |
MA Q, XU Y G. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 2021, 213:103473.
DOI URL |
[82] |
LIN S, XING G, DAVIS D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(4):319-322.
DOI URL |
[83] |
SUN P, GUO P, NIU Y. Eastern China continental lithosphere thinning is a consequence of paleo-Pacific plate subduction: a review and new perspectives[J]. Earth-Science Reviews, 2021, 218:103680.
DOI URL |
[84] |
JAHN B M, VALUI G, KRUK N, et al. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: crustal growth and regional tectonic evolution[J]. Journal of Asian Earth Sciences, 2015, 111:872-918.
DOI URL |
[85] |
Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2):179-182.
DOI URL |
[86] |
ZHOU X, SUN T, SHEN W, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 2006, 29(1):26-33.
DOI URL |
[87] |
LI J, CAWOOD P A, RATSCHBACHER L, et al. Building Southeast China in the late Mesozoic: insights from alternating episodes of shortening and extension along the Lianhuashan fault zone[J]. Earth-Science Reviews, 2020, 201:103056.
DOI URL |
[88] |
WU J T J, WU J, Okamoto K. Intra-oceanic arc accretion along Northeast Asia during Early Cretaceous provides a plate tectonic context for North China craton destruction[J]. Earth-Science Reviews, 2022, 226:103952.
DOI URL |
[89] | 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9):1346-1356. |
[90] |
WANG T, GUO L, ZHANG L, et al. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 2015, 97:365-392.
DOI URL |
[91] |
DAVIS G A, DARBY B J, YADONG Z, et al. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geology, 2002, 30(11):1003-1006.
DOI URL |
[92] |
LIN W, WEI W. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: a review and synjournal[J]. International Geology Review, 2020, 62(7/8):811-839.
DOI URL |
[93] | 李益龙, 周汉文, 肖文交, 等. 古亚洲构造域和西太平洋构造域在索伦缝合带东段的叠加: 来自内蒙古林西县西拉木伦断裂带内变形闪长岩的岩石学, 地球化学和年代学证据[J]. 地球科学: 中国地质大学学报, 2012, 37(3):433-450. |
[94] | 李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古—鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1):56-66. |
[95] | 任强. 华北燕山地区上侏罗统髫髻山组火山岩古地磁新结果及其大地构造意义[D]. 北京: 中国地质大学(北京), 2015. |
[96] |
ŞENGÖR A M C, CIN A, ROWLEY D B, et al. Magmatic evolution of the Tethysides: a guide to reconstruction of collage history[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 87(1/2/3/4):411-440.
DOI URL |
[97] |
YAKUBCHUK A. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model[J]. Journal of Asian Earth Sciences, 2004, 23(5):761-779.
DOI URL |
[98] |
Zhu C Y, Gao R, Zhao G. Permian to Cretaceous tectonic evolution of the Jiamusi and Songliao blocks in NE China: transition from the closure of the Paleo-Asian Ocean to the subduction of the Paleo-Pacific Ocean[J]. Gondwana Research, 2022, 103:371-388.
DOI URL |
[99] |
FRITZELL E H, BULL A L, SHEPHARD GE. Closure of the Mongol-Okhotsk Ocean: insights from seismic tomography and numerical modelling[J]. Earth and Planetary Science Letters, 2016, 445:1-12.
DOI URL |
[100] | 王涛, 郑亚东. 中蒙边界中生代推覆-伸展递进转换及地壳尺度的切向剪切[J]. 地质通报, 2002, 21(4):232-237. |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 李卓骐, 许成, 韦春婉. 地球深部脱碳过程研究评述[J]. 地学前缘, 2024, 31(6): 304-319. |
[3] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[4] | 李云涛, 丁文龙, 韩俊, 黄诚, 王来源, 孟庆修. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287. |
[5] | 童馗, 李智武, 刘树根, I.Tonguç UYSAL, 施泽进, 李金玺, Andrew TODD, 武文慧, 王自剑, 刘升武, 李轲, 华天. 始新世中期安宁河断裂冲断变形特征及其构造意义:来自断层泥自生伊利石K-Ar定年的证据[J]. 地学前缘, 2024, 31(4): 297-313. |
[6] | 陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353. |
[7] | 何建华, 李勇, 邓虎成, 王园园, 马若龙, 唐建明. 川东南永川地区龙马溪组页岩储层构造裂缝特征及期次演化研究[J]. 地学前缘, 2024, 31(3): 298-311. |
[8] | 徐继山, 彭建兵, 隋旺华, 安海波, 李作栋, 徐文杰, 董培杰. 郯庐断裂转换段新沂地裂缝成生机理及构造意义[J]. 地学前缘, 2024, 31(3): 470-481. |
[9] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[10] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[11] | 成秋明. 洋中脊动力学与俯冲带地震-岩浆-成矿事件远程效应[J]. 地学前缘, 2024, 31(1): 1-14. |
[12] | 张进江, 郑剑磊, 王海滨, 郭磊, 刘江, 戚国伟. 内蒙古大青山-盘羊山晚中生代-早新生代构造事件及其对华北北缘构造演化的启示[J]. 地学前缘, 2024, 31(1): 127-141. |
[13] | 任纪舜, 刘建辉, 朱俊宾. 中国东部中生代上叠造山系[J]. 地学前缘, 2024, 31(1): 142-153. |
[14] | 李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27. |
[15] | 王瑞, 张京渤, 罗晨皓, 周秋石, 夏文杰, 赵云. 深部过程和物质架构对大陆碰撞带Cu-REE成矿系统的控制:以冈底斯和三江碰撞带为例[J]. 地学前缘, 2024, 31(1): 211-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||